Title    
                   Hint Use CTRL+F to search this
            list. 
           | 
          Size | 
        
        
          | Aanlysis on Boston Housing Data. | 
          63014 | 
        
        
          | AAPL data | 
          1766 | 
        
        
          | AAPL DATA | 
          614145 | 
        
        
          | aapl sg 1 year | 
          1766 | 
        
        
          | AAU VAP Trimodal People Segmentation Dataset | 
          1263885402 | 
        
        
          | Abalone | 
          191873 | 
        
        
          | Abalone Dataset | 
          196125 | 
        
        
          | AbaloneHotEncoded | 
          425308 | 
        
        
          | abbpp0 | 
          14291428 | 
        
        
          | abcdefg | 
          1635880 | 
        
        
          | abcdfe | 
          24064 | 
        
        
          | abchelloword | 
          6 | 
        
        
          | Abe_Shinzo_tweets | 
          321175 | 
        
        
          | About 60k Organization Information | 
          7664044 | 
        
        
          | Abseenteeism | 
          929911 | 
        
        
          | Absenteeism Dataset | 
          929911 | 
        
        
          | Academic Research from Indian Universities | 
          13163130 | 
        
        
          | Academic Scores for NCAA Athletic Programs | 
          1835179 | 
        
        
          | ACB 1994-2016 Spanish Basketball League Results | 
          25090048 | 
        
        
          | Accidents in India | 
          203003 | 
        
        
          | Accounting _Journals | 
          1927815 | 
        
        
          | ACLED African Conflicts, 1997-2017 | 
          62166877 | 
        
        
          | ACLED Asian Conflicts, 2015-2017 | 
          13625003 | 
        
        
          | Acorn Study: London Smart Meters Block_3 Only | 
          39024425 | 
        
        
          | ACS 2013 Wages | 
          57429033 | 
        
        
          | ACS Homes Year Built | 
          30313188 | 
        
        
          | ACS Shapefiles 2014 | 
          63223841 | 
        
        
          | Active Satellites in Orbit Around Earth | 
          344472 | 
        
        
          | Active Volcanoes in the Philippines | 
          1631 | 
        
        
          | activity_train | 
          12063966 | 
        
        
          | Acuweather data | 
          2650189 | 
        
        
          | add2test | 
          14610163 | 
        
        
          | added dataset sf dfsf fdf fds fdfs edf | 
          4593885 | 
        
        
          | added el pais tweets | 
          18548925 | 
        
        
          | Adding the sample submission to the RAOP | 
          18675 | 
        
        
          | Additional info for leukemia gene expression data | 
          14753124 | 
        
        
          | Additional Processed file churn prediction | 
          871920936 | 
        
        
          | Adelaide City Council Parking Expirations | 
          7737141 | 
        
        
          | adgjløøktg | 
          879 | 
        
        
          | Adience Benchmark Gender And Age Classification | 
          1322949093 | 
        
        
          | adj_close of 2 stocks in 2017 | 
          8325 | 
        
        
          | Adjective Counts in the Works of Edgar Allan Poe | 
          257002 | 
        
        
          | ADLCSV | 
          54087 | 
        
        
          | Administrative divisions of Moscow | 
          698130 | 
        
        
          | Admission | 
          3775 | 
        
        
          | Admob data set | 
          20341 | 
        
        
          | ads click | 
          492005809 | 
        
        
          | Ads from context advertising | 
          141015387 | 
        
        
          | Ads_dataset | 
          210050 | 
        
        
          | ADS-16 Computational Advertising Dataset | 
          790380560 | 
        
        
          | adult census | 
          478855 | 
        
        
          | Adult Census Income | 
          4104734 | 
        
        
          | Adult Census Income with AI | 
          19672538 | 
        
        
          | Adult Data Set | 
          5720607 | 
        
        
          | Adult income dataset | 
          5326368 | 
        
        
          | Adults | 
          479710 | 
        
        
          | adults | 
          3844216 | 
        
        
          | Adverse Food Events | 
          19721957 | 
        
        
          | Adverse Pharmaceuticals Events | 
          4737961793 | 
        
        
          | Advertisement | 
          107424 | 
        
        
          | Advertising | 
          107424 | 
        
        
          | Advertising | 
          107424 | 
        
        
          | Advertising | 
          107424 | 
        
        
          | Advertising and Predict Sales | 
          4756 | 
        
        
          | Advertising and Sales | 
          4756 | 
        
        
          | Advertising Data | 
          5166 | 
        
        
          | Advertising_Dummy  | 
          107424 | 
        
        
          | Ae. aegypti and Ae. albopictus occurrences | 
          3406779 | 
        
        
          | Aegis Dataset | 
          221079 | 
        
        
          | Aerial Bombing Operations in World War II | 
          28483239 | 
        
        
          | Aeropress World Championship 2016 Recipe Data | 
          4004 | 
        
        
          | Aerosol ozone | 
          202743 | 
        
        
          | African bees dataset | 
          628443 | 
        
        
          | Ag Stuff | 
          5293 | 
        
        
          | ag_news | 
          11786319 | 
        
        
          | ag_news_csvs | 
          11798244 | 
        
        
          | ageGroupedCsv | 
          3565 | 
        
        
          | aggensemble | 
          17112439 | 
        
        
          | aggr dataset | 
          70589873 | 
        
        
          | aggr dataset | 
          70569969 | 
        
        
          | Agora Market Data JSONified (2014-2015)  | 
          5868967 | 
        
        
          | Agricultural Survey of African Farm Households | 
          37921937 | 
        
        
          | Agricuture Crops Production In india | 
          104996 | 
        
        
          | AI-Challenger-Scene-Classification Dataset | 
          4417181869 | 
        
        
          | AI-Simulated Games of Machi Koro | 
          108536286 | 
        
        
          | AI2 Science Questions | 
          60617764 | 
        
        
          | AIC Logistic Model | 
          10576811 | 
        
        
          | Air Passengers | 
          1746 | 
        
        
          | Air pollutants measured in Seoul | 
          281689 | 
        
        
          | Air Quality Annual Summary | 
          994187783 | 
        
        
          | Air quality data from extensive network of sensors | 
          8530737 | 
        
        
          | Air quality in northern Taiwan | 
          18765395 | 
        
        
          | air_store_info_mod | 
          83501 | 
        
        
          | Air-Quality | 
          751049 | 
        
        
          | Airbag and other factors on Accident Fatalities | 
          2839783 | 
        
        
          | Airbnb dataset of barcelona city | 
          3017718 | 
        
        
          | Airbnb from insiderairbnb | 
          3337704 | 
        
        
          | Airbnb Property Data from Texas | 
          9350671 | 
        
        
          | Aircraft Accidents from 1908-2009 | 
          533951 | 
        
        
          | Aircraft Wildlife Strikes, 1990-2015 | 
          36443102 | 
        
        
          | Airline Database | 
          322026 | 
        
        
          | Airline Delay 2007 July Sample | 
          61687929 | 
        
        
          | Airline Delay Analysis | 
          589214 | 
        
        
          | Airline Fleets | 
          102267 | 
        
        
          | airline safety | 
          2265 | 
        
        
          | AirlineAirport | 
          24763 | 
        
        
          | Airlines | 
          102218 | 
        
        
          | Airlines Delay | 
          250323223 | 
        
        
          | Airlines Tweets Sentiments | 
          160763 | 
        
        
          | AirPassenger | 
          1746 | 
        
        
          | AirPassengers | 
          1746 | 
        
        
          | AirPassengers | 
          1746 | 
        
        
          | Airplane Crashes Since 1908 | 
          1595468 | 
        
        
          | Airport coordinates of flights - India | 
          17738 | 
        
        
          | Airport of next generation  | 
          923087 | 
        
        
          | AirportList | 
          88020 | 
        
        
          | Airports, Train Stations, and Ferry Terminals | 
          1467576 | 
        
        
          | AirQuality | 
          785065 | 
        
        
          | airquality.csv | 
          3715 | 
        
        
          | aisles.csv | 
          2603 | 
        
        
          | Alaska Airport Data | 
          1076518 | 
        
        
          | Alc consumption and higher education | 
          113855 | 
        
        
          | alc_notitles | 
          954 | 
        
        
          | Alcohol and Drug Consumption of German Teens | 
          14139 | 
        
        
          | Alexa Skill Database | 
          368819 | 
        
        
          | Alexa Top 1 Million Sites | 
          10022849 | 
        
        
          | AlexNet | 
          226826326 | 
        
        
          | Algerian provinces by population | 
          1485 | 
        
        
          | algo_autre | 
          16169679 | 
        
        
          | Alice files | 
          59110781 | 
        
        
          | Alice In Wonderland GutenbergProject | 
          173595 | 
        
        
          | Alien PNG | 
          3830 | 
        
        
          | AliKAbeeel | 
          66 | 
        
        
          | All About Data Science | 
          813445 | 
        
        
          | All hospitals from webometrics | 
          780525 | 
        
        
          | All India Health Centres Directory | 
          20967450 | 
        
        
          | All Lending Club loan data | 
          370662409 | 
        
        
          | All Model Vehicles Years (1984 2017) | 
          16007284 | 
        
        
          | All Perish | 
          3262 | 
        
        
          | All Shark Tank (US) pitches & deals | 
          145852 | 
        
        
          | All the news | 
          669640768 | 
        
        
          | All UK Active Companies By SIC And Geolocated | 
          51931080 | 
        
        
          | All UK Active Company Names | 
          45000051 | 
        
        
          | All-Trans House Price Indx by Metro Area 2007 2015 | 
          7933 | 
        
        
          | allCSVfiles | 
          108755440 | 
        
        
          | Allen-Unger Global Commodity Prices | 
          31218324 | 
        
        
          | Alpha-Numeric Handwritten Dataset | 
          4814459 | 
        
        
          | Alpino Treebank | 
          21604821 | 
        
        
          | Alpino Treebank | 
          21604821 | 
        
        
          | Altair-BigMartdataset | 
          869537 | 
        
        
          | amazon | 
          5926077 | 
        
        
          | Amazon Access Dataset | 
          1942722 | 
        
        
          | Amazon baby dataset | 
          49439484 | 
        
        
          | amazon dataset RBL | 
          655131909 | 
        
        
          | Amazon Echo Dot 2 Reviews Dataset | 
          2459986 | 
        
        
          | Amazon Fine Food Reviews | 
          673703435 | 
        
        
          | Amazon Reviews | 
          155162134 | 
        
        
          | Amazon Reviews for Sentiment Analysis | 
          516929648 | 
        
        
          | Amazon reviews: Kindle Store Category | 
          278372938 | 
        
        
          | Amazon Reviews: Unlocked Mobile Phones | 
          131879567 | 
        
        
          | Amazon stock 2015 | 
          15235 | 
        
        
          | Amazon_review-full | 
          1219911 | 
        
        
          | Amazon.com_Employee Access Challenge | 
          1942722 | 
        
        
          | amazonv2 | 
          5926077 | 
        
        
          | ambassidorData | 
          32851 | 
        
        
          | Ambassodor | 
          112 | 
        
        
          | Ambiguity | 
          2229 | 
        
        
          | AMD and GOOGLE Stock Price | 
          237464 | 
        
        
          | Amending America | 
          5418159 | 
        
        
          | American Presidency Project | 
          343968592 | 
        
        
          | American Time Use Survey | 
          1643970845 | 
        
        
          |  American University Data IPEDS dataset | 
          1240380 | 
        
        
          | Ames dataset | 
          912081 | 
        
        
          | Ames Housing Prices | 
          963738 | 
        
        
          | AMJ Metadata | 
          1423350 | 
        
        
          | amount of vehicles in Beijing  | 
          152064 | 
        
        
          | AMran Marib KAP, WASH | 
          10806 | 
        
        
          | An Open Dataset for Human Activity Analysis | 
          454701982 | 
        
        
          | Analisis Dataset SO2 de Chimenea de planta | 
          1646338 | 
        
        
          | Analysis about crypto currencies and Stock Index | 
          681413 | 
        
        
          | Analysis Bay Area Bike Share Udacity | 
          641057 | 
        
        
          | Analysis on survival of life in titanic | 
          2843 | 
        
        
          | analytics | 
          61194 | 
        
        
          | analytics  | 
          1397246 | 
        
        
          | Analytics_102 .. | 
          1397246 | 
        
        
          | analytics_dataset | 
          1397246 | 
        
        
          | Analytics102 | 
          1395830 | 
        
        
          | Analytics102Solution Dataset | 
          1397246 | 
        
        
          | anchal | 
          451405 | 
        
        
          | AND OR XOR | 
          78 | 
        
        
          | Andover Text | 
          1343 | 
        
        
          | android | 
          569254 | 
        
        
          | andy harless's models stack | 
          10426904 | 
        
        
          | Animal Bites | 
          691381 | 
        
        
          | animated test | 
          89404 | 
        
        
          | animated vs realistic | 
          300386 | 
        
        
          | Anime Recommendations Database | 
          112341362 | 
        
        
          | anime-ord | 
          1011124 | 
        
        
          | anime-utf8 | 
          1012559 | 
        
        
          | AnimeData | 
          26881506 | 
        
        
          | Anna University - Results Dataset | 
          29933943 | 
        
        
          | Anna University results May-June 2016 | 
          29946624 | 
        
        
          | annaunivclg | 
          9001 | 
        
        
          | anneng123 | 
          2614480 | 
        
        
          | Annotated Corpus for Named Entity Recognition | 
          172238510 | 
        
        
          | Annotated Corpus for Named Entity Recognition | 
          2317034 | 
        
        
          | Annual Nominal Fish Catches | 
          4385944 | 
        
        
          | anonymous_survey | 
          121107 | 
        
        
          | another | 
          1229 | 
        
        
          | anotherdatabase | 
          15278727 | 
        
        
          | Antimicrobial resistance - dataviz2015 | 
          56331 | 
        
        
          | AP Computer Science A Exam Dataset | 
          30677 | 
        
        
          | Apartment data | 
          1043072 | 
        
        
          | apj.jpeg | 
          216218 | 
        
        
          | app-price | 
          463538 | 
        
        
          | Apple Stock Prices from 2010-2017 | 
          232757 | 
        
        
          | Apple_Stock_price | 
          1617 | 
        
        
          | applestocks | 
          434879 | 
        
        
          | Appliances Energy Prediction | 
          11979363 | 
        
        
          | Appoints | 
          10850022 | 
        
        
          | APRIL_LSTM_SVR_GP_v2 | 
          2031592 | 
        
        
          | aps_example | 
          8789291 | 
        
        
          | Arabic - Egyptian comparable Wikipedia corpus | 
          276666788 | 
        
        
          | Arabic Handwritten Characters Dataset | 
          76616506 | 
        
        
          | Arabic Handwritten Digits Dataset | 
          259116071 | 
        
        
          | Arabic Natural Audio Dataset | 
          586942737 | 
        
        
          | arabic_tweets_vs_dialects | 
          226281 | 
        
        
          | Archive | 
          7549 | 
        
        
          | Archived_SmartMeter_Data | 
          59878235 | 
        
        
          | Area and Geography | 
          504712 | 
        
        
          | Argentina's Private Neighborhoods | 
          174189 | 
        
        
          | Aristo MINI Corpus | 
          103465506 | 
        
        
          | Armenian Online Job Postings | 
          96790782 | 
        
        
          | Armenian Pub Survey | 
          33208 | 
        
        
          | Armors, Exoskeletons & Mecchas | 
          43759 | 
        
        
          | Array of objects with two fields | 
          136 | 
        
        
          | Array of recipes | 
          12415067 | 
        
        
          | Arrest Related Violence in California | 
          20950056 | 
        
        
          | Arrests by Baltimore Police Department | 
          19915966 | 
        
        
          | Article Titles from TechCrunch and VentureBeat | 
          1397372 | 
        
        
          | articles | 
          26442972 | 
        
        
          | Articles from wikipedia | 
          1426478 | 
        
        
          | Articles sharing and reading from CI&T DeskDrop | 
          29942455 | 
        
        
          | Arxiv Astrophysics Collaboration Network | 
          10568976 | 
        
        
          | ARXIV data from 24,000+ papers | 
          5913087 | 
        
        
          | As 500 empresas que mais devem a previdencia | 
          39969 | 
        
        
          | asdadda | 
          514556 | 
        
        
          | asdasdasd | 
          8 | 
        
        
          | asdf 3456 e3d4f5 | 
          13593165 | 
        
        
          | asdf_v1 | 
          7974978 | 
        
        
          | asdfgdfghjk | 
          668 | 
        
        
          | asdfghjk | 
          454 | 
        
        
          | asdfghjkasdfghjk | 
          127723 | 
        
        
          | asdfghjklæø | 
          454 | 
        
        
          | asdfsds | 
          6547834 | 
        
        
          | Asian American Actors | 
          3129 | 
        
        
          | Asian.csv | 
          5450 | 
        
        
          | asian123.csv | 
          5450 | 
        
        
          | ASII 5 years | 
          171479 | 
        
        
          | ASII.jk | 
          229716 | 
        
        
          | AskDocs Posts | 
          222635 | 
        
        
          | assign | 
          18245 | 
        
        
          | Assignment 8 | 
          61194 | 
        
        
          | assignment1 | 
          752137 | 
        
        
          | Association of Tennis Professionals Matches | 
          11898898 | 
        
        
          | Association Rules | 
          301359 | 
        
        
          | Astronomy | 
          99358 | 
        
        
          | ASX Australia Equity Prices - 1997 to 2016 | 
          247367064 | 
        
        
          | Atlas of Pidgin and Creole Language Structures | 
          1564943 | 
        
        
          | ATM Transaction Data of City Union Bank | 
          847136 | 
        
        
          | Atom Dataset | 
          0 | 
        
        
          | ATP Matches, 1968 to 2017 | 
          33004965 | 
        
        
          | ATP Men's Tour | 
          9471729 | 
        
        
          | ATP Tennis Dataset | 
          2579313 | 
        
        
          | attempt2 | 
          17101377 | 
        
        
          | attractions | 
          740220 | 
        
        
          | attrition de clientes | 
          13087604 | 
        
        
          | Attrition Example | 
          235331 | 
        
        
          | attrition-csv | 
          3111278 | 
        
        
          | ATUS Data 2015 (Exercise Portion) | 
          766632 | 
        
        
          | ATVICSV | 
          158860 | 
        
        
          | atviprice | 
          201 | 
        
        
          | ATVIStockPrice | 
          158860 | 
        
        
          | Audio Cats and Dogs | 
          61536433 | 
        
        
          | Audio Features for Playlist Creation | 
          683544 | 
        
        
          | Audio features of songs ranging from 1922 to 2011 | 
          443424016 | 
        
        
          | audioa | 
          192264 | 
        
        
          | aug_data | 
          55285 | 
        
        
          | augment data | 
          31364 | 
        
        
          | Austin 311 Calls | 
          171303265 | 
        
        
          | Austin Bike Share Trips | 
          87346478 | 
        
        
          | Austin Crime Statistics | 
          19419689 | 
        
        
          | Austin Waste and Diversion | 
          63489783 | 
        
        
          | Austin Weather | 
          105734 | 
        
        
          | Austin Zoning Satellite Images | 
          596268822 | 
        
        
          | Australia NSW traffic penalty data 2011-2017 | 
          9060956 | 
        
        
          | Australian Broadcasting Commission | 
          4054966 | 
        
        
          | Australian Domestic Airline Traffic | 
          1332539 | 
        
        
          | Australian Football League Database | 
          7892768 | 
        
        
          | Australian Marriage Law Postal Survey | 
          300680 | 
        
        
          | Australian National University Courses | 
          740058 | 
        
        
          | Author Disambiguation | 
          24222133 | 
        
        
          | author_train | 
          1345945 | 
        
        
          | AuthorIdentification | 
          628563 | 
        
        
          | Auto Insurance in Sweden | 
          940 | 
        
        
          | Auto Insurance in Sweden (small dataset) | 
          765 | 
        
        
          | Auto MPG Data Set | 
          30286 | 
        
        
          | Auto-Mpg Data | 
          14080 | 
        
        
          | Auto-mpg dataset | 
          18131 | 
        
        
          | auto-price-train-data | 
          134964916 | 
        
        
          | AutoAssign | 
          18428 | 
        
        
          | automateassignment | 
          18070 | 
        
        
          | Automatic generation of Guard roles | 
          193223 | 
        
        
          | Automobile Dataset | 
          25070 | 
        
        
          | automobiles | 
          18131 | 
        
        
          | autompg | 
          19944 | 
        
        
          | autompg | 
          32149 | 
        
        
          | Autos - Consumo Gasolina Mexico | 
          371902 | 
        
        
          | Autos_Edited | 
          28673796 | 
        
        
          | AV datahack | 
          802079 | 
        
        
          | AV_8jan | 
          1270747 | 
        
        
          | AV_bank_cross_sell | 
          344589708 | 
        
        
          | av_cross_sell_train_data | 
          206958153 | 
        
        
          | av_hack | 
          387701398 | 
        
        
          | AV_hiring | 
          802079 | 
        
        
          | AV_Mckinskey | 
          700124 | 
        
        
          | av_vala | 
          387701398 | 
        
        
          | Average Fuel Consumption | 
          3722 | 
        
        
          | Average SAT Scores for NYC Public Schools | 
          81172 | 
        
        
          | Average Sun Spot Number | 
          5850 | 
        
        
          | Averaged Perceptron Tagger | 
          6138625 | 
        
        
          | AvgHappinessScore | 
          11903 | 
        
        
          | AvgHappyscore | 
          11903 | 
        
        
          | avglgmxgb | 
          1148751 | 
        
        
          | Aviation Accident Database & Synopses | 
          3908294 | 
        
        
          | awefwrgwfewefwe | 
          12131320 | 
        
        
          | Awesome Public Datasets as Neo4j Graph | 
          2956968 | 
        
        
          | AWS Spot Pricing Market | 
          1815291461 | 
        
        
          | Azerbaijan Voter List, 2016 | 
          739089516 | 
        
        
          | B6266B | 
          465754 | 
        
        
          | Baboon Mating and Genetic Admixture | 
          1573631 | 
        
        
          | Baby girl breast feeds | 
          199511 | 
        
        
          | Baby Photos | 
          116207 | 
        
        
          | Bach Chorales Data Set | 
          304998 | 
        
        
          | BachelorsDegreeWomenUSA | 
          5681 | 
        
        
          | Bad teeth, sugar and government health spending | 
          311044 | 
        
        
          | Bad words | 
          3477 | 
        
        
          | BADM_dataset | 
          3807560 | 
        
        
          | BadWordsGoole | 
          1474 | 
        
        
          | Bag of word meets bag of popcorn | 
          27246077 | 
        
        
          | Bag of Words Meets Bags of Popcorn | 
          54896086 | 
        
        
          | Bag of Words Meets Bags of Popcorn | 
          33556378 | 
        
        
          | Bag of Words Meets Bags of Popcorn unlabeled | 
          27649993 | 
        
        
          | Bag of Words Meets Bags of Popcorn: Data | 
          54896086 | 
        
        
          | Bagging | 
          18196682 | 
        
        
          | Bagrut grades in Israeli high schools (2013-2016) | 
          609824 | 
        
        
          | Baltimore 911 Calls | 
          295690533 | 
        
        
          | Baltimore 911 Calls For Service 2015- late 2017 | 
          64663547 | 
        
        
          | Baltimore 911 Calls for Service, 2015-2017 | 
          212145583 | 
        
        
          | Banco Imobiliário | 
          4117 | 
        
        
          | bancos | 
          134945 | 
        
        
          | Bancos | 
          248022779 | 
        
        
          | Bandwidth occupancy | 
          10643913 | 
        
        
          | Bangalore_Cell_ORR | 
          814652 | 
        
        
          | Bank Account Movements 01-01-2017 to 08-11-2017 | 
          69097 | 
        
        
          | Bank Churn Modelling | 
          684858 | 
        
        
          | Bank Fears Loanliness | 
          66100489 | 
        
        
          | Bank Loan Status Dataset | 
          20589209 | 
        
        
          | Bank Marketing | 
          461474 | 
        
        
          | bank marketing | 
          918960 | 
        
        
          | Bank Marketing | 
          918960 | 
        
        
          | Bank Marketing Dataset | 
          461474 | 
        
        
          | Bank Marketing Dataset | 
          918960 | 
        
        
          | Bank Marketing-Dataset | 
          465338 | 
        
        
          | Bank Markting Dataset Description | 
          3864 | 
        
        
          | bank notes | 
          45088 | 
        
        
          | Bank Telemarketing (moro et al.) | 
          489118 | 
        
        
          | Bank_Loan_data | 
          696953 | 
        
        
          | bankdata | 
          133638 | 
        
        
          | BankProject | 
          239185824 | 
        
        
          | Banks data | 
          687440 | 
        
        
          | Barcelona Accidents | 
          10518158 | 
        
        
          | Barcelona Accidents | 
          17866759 | 
        
        
          | Barcelona Unemployment | 
          41655 | 
        
        
          | Barclays Premier League Games Won 2010-16 | 
          858 | 
        
        
          | Base de dados de testes | 
          15737 | 
        
        
          | BASE DE DATOS | 
          380152 | 
        
        
          | base de teste | 
          143736 | 
        
        
          | base model | 
          14133049 | 
        
        
          | base_sin | 
          23247018 | 
        
        
          | base-weights | 
          22843928 | 
        
        
          | Baseball | 
          848362 | 
        
        
          | Baseball Data | 
          13289647 | 
        
        
          | Baseball Databank | 
          24711821 | 
        
        
          | Baseball_stats_LR_avg | 
          499829 | 
        
        
          | BaseballData-JohnKruschke | 
          33913 | 
        
        
          | baseballfield | 
          5138872 | 
        
        
          | Baseline | 
          28698153 | 
        
        
          | Baseline | 
          3258 | 
        
        
          | baseline | 
          74007502 | 
        
        
          | Baseline Results | 
          7237183 | 
        
        
          | baseline_ru_ | 
          7270173 | 
        
        
          | baseline_weight_toxic | 
          22786953 | 
        
        
          | baseline-script2 | 
          55512 | 
        
        
          | Basemanp | 
          2284 | 
        
        
          | Basemap | 
          1736475 | 
        
        
          | Basemap | 
          1796170 | 
        
        
          | Basemaps | 
          1796170 | 
        
        
          | Basic Classification Example with TensorFlow | 
          150 | 
        
        
          | Basic Computer Data | 
          296595 | 
        
        
          | Basic Income Survey - 2016 European Dataset | 
          3602700 | 
        
        
          | BasinCharacteristic_v1 | 
          10951 | 
        
        
          | Basket Ball Computer Vision | 
          8562527 | 
        
        
          | Basket Optimisation | 
          302908 | 
        
        
          | BasketBallShots | 
          12046 | 
        
        
          | BasketBallShotsLog | 
          870 | 
        
        
          | batches_meta_for_CFAR10 | 
          158 | 
        
        
          | Baton Rouge Crime Incidents | 
          69410481 | 
        
        
          | Baymax_test | 
          4979247939 | 
        
        
          | Baymax_train | 
          7464855374 | 
        
        
          | bbbbbb | 
          4072076 | 
        
        
          | bbbbbb | 
          19576768 | 
        
        
          | BBK Deep Learning lab trained weights | 
          2465781 | 
        
        
          | BBK Lab models | 
          7286507 | 
        
        
          | BBVA data challenge | 
          3111232 | 
        
        
          | BC-testing | 
          4967 | 
        
        
          | BCGENES | 
          59511 | 
        
        
          | BCtest3names | 
          5241 | 
        
        
          | Bctest4 | 
          58121 | 
        
        
          | Bctest4e | 
          1959 | 
        
        
          | BCtestEval3 | 
          989 | 
        
        
          | BCtesting2 | 
          4967 | 
        
        
          | BCtesting3 | 
          5035 | 
        
        
          | BCtesting3eval | 
          948 | 
        
        
          | BCtestingVal | 
          880 | 
        
        
          | BD_digits2017 | 
          8876037 | 
        
        
          | Beat The Bookie: Odds Series Football Dataset | 
          88433374 | 
        
        
          | Beautiful_Liar | 
          668613 | 
        
        
          | BeeSensors | 
          127622 | 
        
        
          | BeeSensorsTime | 
          152275 | 
        
        
          | Beginner Projects - Analyse subtitles for a movie | 
          8167871 | 
        
        
          | Beginner Projects - Ergonomic Study on Chopsticks | 
          2590 | 
        
        
          | Beginner Projects - P03 - Data Wrangling | 
          39879524 | 
        
        
          | Beginners | 
          460676 | 
        
        
          | Beginners_test | 
          451405 | 
        
        
          | Behavioral Risk Factor Surveillance System | 
          2879064925 | 
        
        
          | Beijing PM2.5 concentration | 
          759218 | 
        
        
          |  Beijing PM2.5 Data Data Set  | 
          2010494 | 
        
        
          | Bellwether Project 3 dataset | 
          35627627 | 
        
        
          | Ben Hamner's Tweets | 
          809545 | 
        
        
          | Ben's training dataset | 
          38013 | 
        
        
          | Benchmark | 
          9914219 | 
        
        
          | Bengali Digit Recognition in the Wild (BDRW) | 
          1460338 | 
        
        
          | Benz data | 
          75220 | 
        
        
          | best single model tested | 
          206347 | 
        
        
          |  Bestseller books on Paytm | 
          2483706 | 
        
        
          | bestz3 | 
          4072076 | 
        
        
          | Betfair.com Market Analysis | 
          31376 | 
        
        
          | beth_20180112_3 | 
          4905469 | 
        
        
          | beth_20180113 | 
          4917916 | 
        
        
          | beth_20180116 | 
          4900805 | 
        
        
          | beth_20180116_1 | 
          4913642 | 
        
        
          | beth20180111 | 
          4710144 | 
        
        
          | beth20180111_2 | 
          4710152 | 
        
        
          | beth20180112 | 
          4771899 | 
        
        
          | beth20180112_2 | 
          4913555 | 
        
        
          | Better Life Index 2017 | 
          461364 | 
        
        
          | Better Life Index and Gross Domestic Product | 
          441253 | 
        
        
          | (Better) - Donald Trump Tweets! | 
          1703362 | 
        
        
          | Between Our Worlds: An Anime Ontology | 
          101255372 | 
        
        
          | BFRO Bigfoot Sighting Report | 
          510758 | 
        
        
          | Bi-LSTM Glove Toxic | 
          14303674 | 
        
        
          | bi-sep-2d | 
          2150 | 
        
        
          | Bias Media CAT | 
          75828094 | 
        
        
          | Bible Corpus | 
          448027096 | 
        
        
          | Bible Verses from King James Version | 
          5130834 | 
        
        
          | Big Bash Dataset(till 2017) | 
          6304660 | 
        
        
          | Big Data courses in chennai | 
          744359 | 
        
        
          | Big mart sales | 
          1397246 | 
        
        
          | BIG MART sales | 
          1397246 | 
        
        
          | BIG MART SALES PREDICTION | 
          1603339 | 
        
        
          | big_data | 
          113183 | 
        
        
          | bigavg | 
          5734230 | 
        
        
          | BigBangTweets | 
          11929 | 
        
        
          | Bigdata | 
          839 | 
        
        
          | bigdata | 
          13010289 | 
        
        
          | BigMart | 
          869537 | 
        
        
          | BigMart Dataset | 
          1397246 | 
        
        
          | Bike July & August | 
          29179 | 
        
        
          | Bike Share Daily Data | 
          1214305 | 
        
        
          | Bike Share Data | 
          3155333 | 
        
        
          | BikeShare Analysis | 
          12745432 | 
        
        
          | Billboard 1964-2015 Songs + Lyrics | 
          7953541 | 
        
        
          | billboard-exercise | 
          90190 | 
        
        
          | billion word imputation | 
          1791536775 | 
        
        
          | BinarClass | 
          106113693 | 
        
        
          | Binary 100 iv3 | 
          13884138 | 
        
        
          | binary 100 iv3 299 | 
          14123531 | 
        
        
          | Binary 2D Points | 
          2150 | 
        
        
          | binary CD 3956vs3954 iv3 224 | 
          21593750 | 
        
        
          | Binary_100-iv3 | 
          13884138 | 
        
        
          | Binary_CD11 | 
          73306495 | 
        
        
          | Binary_iv3_100 | 
          13884138 | 
        
        
          | Binary-100-inceptionV3 | 
          12191155 | 
        
        
          | Binary-100-iv3 | 
          12191155 | 
        
        
          | Binary-incemptionv3-100 | 
          13884138 | 
        
        
          | Bioassay Datasets | 
          225816146 | 
        
        
          | Biocreative PPI | 
          1537086 | 
        
        
          | Biodiversity in National Parks | 
          17505172 | 
        
        
          | Biogas Datafile | 
          1580 | 
        
        
          | Biomechanical features of orthopedic patients | 
          51144 | 
        
        
          | Bird Strikes | 
          9711657 | 
        
        
          | Birds' Bones and Living Habits | 
          25520 | 
        
        
          | Births in U.S 1994 to 2003 | 
          64494 | 
        
        
          | BITCOIN | 
          230935 | 
        
        
          | Bitcoin (USD) Price | 
          76441 | 
        
        
          | Bitcoin & Altcoins in 2017 | 
          827218 | 
        
        
          | Bitcoin CZK/USD 2017 12 07 | 
          281400 | 
        
        
          | Bitcoin Historical Data | 
          125130895 | 
        
        
          | Bitcoin historical price | 
          28645 | 
        
        
          | bitcoin merged | 
          111786 | 
        
        
          | Bitcoin Price over the years | 
          44854 | 
        
        
          | Bitcoin Price Prediction (LightWeight CSV) | 
          111826 | 
        
        
          | BitCoin stuff | 
          4967 | 
        
        
          | bitcoin twitter | 
          1236482 | 
        
        
          | Bitcoin twitter | 
          1236558 | 
        
        
          | Bitcoin Twitter Feed | 
          1236398 | 
        
        
          | Bitcoin Vericoin dataset (Poloniex + Mosquito) | 
          54084383 | 
        
        
          | Bitcoin_PriceMovement | 
          40131 | 
        
        
          | bitcoin_prices_coinbase_USD | 
          47846994 | 
        
        
          | bitcoin-pic | 
          22767 | 
        
        
          | Bitcoin,Etherium,Litecoin Exchange Price | 
          181778 | 
        
        
          | 'Bitcoin' volume on Google | 
          3327 | 
        
        
          | BitcoinData | 
          1686 | 
        
        
          | bitcoinData | 
          120208 | 
        
        
          | BitcoinData2 | 
          1499 | 
        
        
          | BitcoinData3 | 
          1413 | 
        
        
          | Bitfinex hourly BTCUSD | 
          2619778 | 
        
        
          | Biticoin Enigma | 
          40131 | 
        
        
          | Biticoin Kernel | 
          40131 | 
        
        
          | Biticoin price Movement  | 
          40131 | 
        
        
          | Biticoin Price Movement over the years | 
          40131 | 
        
        
          | BIXI Montreal (public bicycle sharing system) | 
          174436124 | 
        
        
          | blaaaa | 
          4072081 | 
        
        
          | Blabla | 
          41096944 | 
        
        
          | blabla | 
          203 | 
        
        
          | Black Friday | 
          7870870 | 
        
        
          | Blend 1 | 
          7913980 | 
        
        
          | Blend 1 5 | 
          9334493 | 
        
        
          | Blend 1_1 | 
          7946488 | 
        
        
          | Blend 1_2 | 
          7946488 | 
        
        
          | Blend sub 2 | 
          7954022 | 
        
        
          | Blend1 | 
          7946488 | 
        
        
          | BLLIP Parser Model | 
          54298623 | 
        
        
          | Blog Authorship Corpus | 
          800419647 | 
        
        
          | Blood Cells  | 
          306982020 | 
        
        
          | Blood donation in Brazil | 
          22258 | 
        
        
          | Blue Plaques | 
          26942816 | 
        
        
          | bmax2017 | 
          4082655 | 
        
        
          | BMTC data set for device id 150813052 | 
          7954109 | 
        
        
          | BMTC_data | 
          7954109 | 
        
        
          | Boa-png-title | 
          0 | 
        
        
          | Board Game Data | 
          1490899 | 
        
        
          | board games | 
          51277028 | 
        
        
          | Board Games Dataset | 
          147056640 | 
        
        
          | boats1 | 
          104475 | 
        
        
          | Body measurements | 
          58818 | 
        
        
          | body zones TSA | 
          269994 | 
        
        
          | Body Zones TSA | 
          269994 | 
        
        
          | BonCoin | 
          784851 | 
        
        
          | book_len | 
          43907601 | 
        
        
          | Border_collie_stylized | 
          1413276 | 
        
        
          | Boris/Santander Bikes London | 
          401920 | 
        
        
          | Boston | 
          44575 | 
        
        
          | Boston 311 non-emergency data 2015 | 
          18540424 | 
        
        
          | Boston 311 non-emergency service data 2015 | 
          18540424 | 
        
        
          | Boston Airbnb Open Data | 
          75598461 | 
        
        
          | Boston Celtics Roster Data 14-15 | 
          915 | 
        
        
          | boston Dataset | 
          45082 | 
        
        
          | Boston House Prices | 
          49082 | 
        
        
          | Boston Housing | 
          35883 | 
        
        
          | Boston Housing | 
          12925 | 
        
        
          | Boston Housing | 
          45082 | 
        
        
          | Boston Housing | 
          12435 | 
        
        
          | Boston housing dataset | 
          35008 | 
        
        
          | Boston_housing | 
          626120 | 
        
        
          | bottleneck features inception/xception | 
          23370804 | 
        
        
          | bottleneck_features | 
          152597337 | 
        
        
          | BoW Test data | 
          32724746 | 
        
        
          | boxdata | 
          35423835 | 
        
        
          | boxplot | 
          255187 | 
        
        
          | boxp ot | 
          419365 | 
        
        
          | BR on Sep 2017 | 
          19524 | 
        
        
          | brain_body | 
          1258 | 
        
        
          | brain_body1 | 
          1258 | 
        
        
          | Brainwave | 
          989899 | 
        
        
          | brainwave-1 | 
          845939 | 
        
        
          | Brainwaves-2 | 
          39652204 | 
        
        
          | Brainwaves2018_Hackathon_Q2_FraudulentTransactions | 
          39652204 | 
        
        
          | Brand Characteristics | 
          1093505 | 
        
        
          | Brazil Elections 2014 | 
          30224279 | 
        
        
          | Brazil Gdp & Electricity Consumption | 
          1153 | 
        
        
          | brazil_chambers_of_deputies_2015_2017 | 
          32595274 | 
        
        
          | Brazil's House of Deputies Reimbursements | 
          412860343 | 
        
        
          | Brazil's House of Deputy Refunds | 
          333806963 | 
        
        
          | Brazil's Parliamentary Quota - Cota Parlamentar | 
          80335104 | 
        
        
          | Brazilian Aeronautics Accidents | 
          629609 | 
        
        
          | Brazilian Coins | 
          410011522 | 
        
        
          | Brazilian congress | 
          121196414 | 
        
        
          | Brazilian Federal Legislative activity | 
          55316944 | 
        
        
          | Brazilian Motor Insurance Market | 
          1853678 | 
        
        
          | Brazilian National Congress' open data - 2016  | 
          8306780 | 
        
        
          | Brazilian Portuguese Literature Corpus | 
          23629080 | 
        
        
          | Brazillian Sexual Gender | 
          19978527 | 
        
        
          | Breakaway | 
          7598 | 
        
        
          | Breakdown of Titanic Passengers by Class | 
          99663 | 
        
        
          | BreasCance Predication | 
          125773 | 
        
        
          | breast cancer | 
          125204 | 
        
        
          | Breast Cancer (Diagnosis) Wisconsin Data Set | 
          125204 | 
        
        
          | breast cancer dataset | 
          19889 | 
        
        
          | Breast Cancer Dataset | 
          125141 | 
        
        
          | Breast Cancer Dataset | 
          14552 | 
        
        
          | Breast Cancer Excercise | 
          927975 | 
        
        
          | Breast Cancer Proteomes | 
          12440701 | 
        
        
          | Breast Cancer Wisconsin | 
          125141 | 
        
        
          | Breast Cancer Wisconsin - Data Set | 
          125773 | 
        
        
          | Breast Cancer Wisconsin (Diagnostic) Data Set | 
          125773 | 
        
        
          | Breast Cancer Wisconsin (Diagnostic) Data Set | 
          125204 | 
        
        
          | Breast Cancer Wisconsin (Prognostic) Data Set | 
          125204 | 
        
        
          | Breast Histology Images | 
          41647052 | 
        
        
          | Breast Histopathology Images | 
          1644892042 | 
        
        
          | Breast_Cancer_Prediction | 
          757015 | 
        
        
          | Breast-Cancer Diagnosis | 
          124103 | 
        
        
          | Breast-Cancer Wisconsin | 
          20723 | 
        
        
          | breast-cancer_fixed | 
          20028 | 
        
        
          | breastcanceranalysis | 
          125204 | 
        
        
          | BreastCancerDataset | 
          125204 | 
        
        
          | breastdata | 
          125204 | 
        
        
          | Breathing Data from a Chest Belt | 
          56598 | 
        
        
          | Breweries & Brew Pubs in the USA | 
          23206956 | 
        
        
          | BRFSS 2001-2010 | 
          3995416294 | 
        
        
          | Brighter Monday Job Listings | 
          131585 | 
        
        
          | BRIS_SOL | 
          4598266 | 
        
        
          | bris_solar | 
          4598215 | 
        
        
          | BRIS3solar | 
          1004626 | 
        
        
          | BRIS4solar | 
          978902 | 
        
        
          | bris5soalr | 
          978902 | 
        
        
          | bris6solar | 
          978902 | 
        
        
          | Brisbane-solar | 
          16114172 | 
        
        
          | British Birdsong Dataset | 
          664058938 | 
        
        
          | British Queen's Oversea Visits | 
          44580 | 
        
        
          | Brown Corpus | 
          3314357 | 
        
        
          | Brown_corpus | 
          2311316 | 
        
        
          | BSETestingData | 
          394601 | 
        
        
          | btc test dataset | 
          254 | 
        
        
          | btc train dataset | 
          120314 | 
        
        
          | BTC-daily-to-2017-12-22 | 
          175131 | 
        
        
          | BTC-predict-daily-direction-exchange-rate | 
          4520696 | 
        
        
          | BTC2-echange-rate | 
          799402 | 
        
        
          | btc2data | 
          800397 | 
        
        
          | btc2data2 | 
          1599799 | 
        
        
          | BTCUSDKRAKEN | 
          113646 | 
        
        
          | buddha | 
          156888 | 
        
        
          | Buenos Aires public WiFi access points | 
          1468312 | 
        
        
          | Bug Triaging | 
          3331086 | 
        
        
          | Bugcr1 | 
          642961 | 
        
        
          | Build Bridges, Not Walls | 
          312885086 | 
        
        
          | Building Management System Analysis | 
          6837022 | 
        
        
          | Buildings in Vyronas, Athens | 
          80606350 | 
        
        
          | Burritos in San Diego | 
          68238 | 
        
        
          | Bus Breakdown and Delays NYC | 
          34426888 | 
        
        
          | Busiest Airports by Passenger Traffic | 
          38193 | 
        
        
          | Business and Industry Reports | 
          42122543 | 
        
        
          | buxbuxx | 
          4053304 | 
        
        
          | C Core train data set | 
          61145796 | 
        
        
          | c++ output | 
          3928163 | 
        
        
          | C++ ROCKET SIMULATION  | 
          26602 | 
        
        
          | C++ submission | 
          4080826 | 
        
        
          | calc_case_description_train_set .csv | 
          925310 | 
        
        
          | CalCOFI | 
          269479923 | 
        
        
          | calendars | 
          3530 | 
        
        
          | calhousingclean | 
          956962 | 
        
        
          | California cities dataset | 
          68212 | 
        
        
          | California Crime and Law Enforcement | 
          100594 | 
        
        
          | California DDS Expenditures | 
          41947 | 
        
        
          | California Electricity Capacity | 
          16677076 | 
        
        
          | California Facilities Pollutant Emissions Data | 
          1289427 | 
        
        
          | California Housing | 
          1423529 | 
        
        
          | California Housing Prices | 
          409342 | 
        
        
          | California Housing Prices | 
          1423529 | 
        
        
          | California Kindergarten Immunization Rates | 
          7615380 | 
        
        
          | California Wire Tapping | 
          16254187 | 
        
        
          | Call Tests Measurements for MOS prediction | 
          5849559 | 
        
        
          | cambridge_net | 
          41367 | 
        
        
          | cambridge_net_titles | 
          36703 | 
        
        
          | camera_dataset | 
          86961 | 
        
        
          | Campaign Finance versus Election Results | 
          608167 | 
        
        
          | Can You Predict Product Backorders? | 
          140115122 | 
        
        
          | Canada National Justice Survey 2016 | 
          4510407 | 
        
        
          | Canadian Car Accidents 1994-2014 | 
          369929843 | 
        
        
          | Canadian Disaster Database | 
          2413370 | 
        
        
          | Cancer Data 2017 | 
          2859 | 
        
        
          | Cancer Inhibitors | 
          1997120952 | 
        
        
          | Cancer inhibitors cdk2 protein | 
          30978162 | 
        
        
          | cancer_test | 
          6144 | 
        
        
          | cancer_train | 
          25762 | 
        
        
          | cancerdata | 
          119889 | 
        
        
          | Cannabis Strains | 
          424888 | 
        
        
          | capital-tpdatos | 
          228297591 | 
        
        
          | Captcha Images | 
          2108196 | 
        
        
          | Car brands (1970 to 2016) | 
          683595 | 
        
        
          | Car Emissions data | 
          821983 | 
        
        
          | Car Evaluation | 
          51867 | 
        
        
          | Car Evaluation Data Set | 
          53593 | 
        
        
          | Car Features and MSRP | 
          1475504 | 
        
        
          | Car Insurance | 
          31424312 | 
        
        
          | Car Insurance Cold Calls | 
          974312 | 
        
        
          | Car Mileage | 
          1783 | 
        
        
          | Car Sale Advertisements | 
          538237 | 
        
        
          | Car sales  | 
          16018 | 
        
        
          | Car sales  | 
          399 | 
        
        
          | Car trips data log | 
          274521770 | 
        
        
          | Car_sales | 
          16774 | 
        
        
          | Car_sales.csv | 
          16774 | 
        
        
          | Caravan Insurance | 
          1712632 | 
        
        
          | Caravan Insurance Challenge | 
          1762896 | 
        
        
          | Caravana : Dont get Kicked | 
          14487324 | 
        
        
          | Carbon Dioxide Levels in Atmosphere | 
          31974 | 
        
        
          | Carbon Emissions | 
          627195 | 
        
        
          | Carbon Monoxide Daily Summary | 
          2289514800 | 
        
        
          | card_glm | 
          2126191 | 
        
        
          | Cardset | 
          2862995 | 
        
        
          | CargoDataCsv | 
          287859225 | 
        
        
          | Cars Data | 
          37716 | 
        
        
          | Cars Data | 
          8724 | 
        
        
          | Carsales | 
          12017 | 
        
        
          | CART, RF train and test datasets | 
          1075370 | 
        
        
          | CartolaFC | 
          8880984 | 
        
        
          | Case Data from San Francisco 311 | 
          666969758 | 
        
        
          | caseData | 
          8440826 | 
        
        
          | Cat Image Test | 
          190857 | 
        
        
          | CAT Scan Localization | 
          81517067 | 
        
        
          | cat vs dog | 
          854597350 | 
        
        
          | cat_17 | 
          17081526 | 
        
        
          | cat_out | 
          17105052 | 
        
        
          | Catalonia GDP by demand components (2000-2016) | 
          1973 | 
        
        
          | catboost | 
          17078300 | 
        
        
          | catboost data | 
          20650662 | 
        
        
          | Catboost_best_1 | 
          25324 | 
        
        
          | catboost-porto | 
          4931645 | 
        
        
          | catboost1223 | 
          8224176 | 
        
        
          | catboost122302 | 
          7913283 | 
        
        
          | catboost122303 | 
          7886839 | 
        
        
          | catboost1224 | 
          7939814 | 
        
        
          | catboost122402 | 
          7904888 | 
        
        
          | categories | 
          441411 | 
        
        
          | Categories | 
          416158 | 
        
        
          | categories | 
          53079 | 
        
        
          | Caterpillar Tube Pricing Dataset | 
          2781029 | 
        
        
          | catndog | 
          24007391 | 
        
        
          | catndog | 
          24007391 | 
        
        
          | Catndog | 
          45441084 | 
        
        
          | Cats and Dogs | 
          870693599 | 
        
        
          | Cats Versus Dogs | 
          65851768 | 
        
        
          | Cats Vs Dogos | 
          284321224 | 
        
        
          | cats_vs_dogs | 
          17944920 | 
        
        
          | cats&dogs | 
          227731756 | 
        
        
          | CatsNDogs mini | 
          231180273 | 
        
        
          | CatVsDogPKLfile | 
          615497712 | 
        
        
          | CAUSES OF DEATH IN THE WORLD 2014 | 
          15495023 | 
        
        
          | CCAA_pupulation | 
          32846 | 
        
        
          | cccccc | 
          1464646 | 
        
        
          | ccfant | 
          423245510 | 
        
        
          | CD_11_100_iv3_224 | 
          73306495 | 
        
        
          | CD11 100 iv3 224 | 
          73306495 | 
        
        
          | CD11 100 iv3 224 | 
          73306495 | 
        
        
          | Cdbc 300 iv3 180 1stImg | 
          7724015 | 
        
        
          | CDbc 300 iv3 224 | 
          13727516 | 
        
        
          | cdbc-1000ts-iv3-180-1stimg | 
          25757753 | 
        
        
          | CDbc300iv3-180-1stimg | 
          7724015 | 
        
        
          | CDC 500 Cities | 
          586177 | 
        
        
          | Cdiscount image classification submission samples | 
          732 | 
        
        
          | cdiscount_data | 
          631150 | 
        
        
          | CdiscountDataset | 
          7856670 | 
        
        
          | Celebrity Deaths | 
          2153226 | 
        
        
          | Celebrity Tweets | 
          441218 | 
        
        
          | Census | 
          478999 | 
        
        
          | Census data | 
          3448964 | 
        
        
          | Census Income Dataset | 
          667697 | 
        
        
          | Census India 2011 | 
          5663455 | 
        
        
          | census USA | 
          1019724 | 
        
        
          | censusdata | 
          317951 | 
        
        
          | Centers for Medicare & Medicaid Service Area Data | 
          5910190 | 
        
        
          | ceral analysis | 
          14409 | 
        
        
          | ceral_ | 
          14409 | 
        
        
          | cereal | 
          5157 | 
        
        
          | cereal dataset | 
          5063 | 
        
        
          | cereals dataset | 
          5063 | 
        
        
          | Cervical Cancer Risk Classification | 
          102059 | 
        
        
          | Cervical cancer tumor vs matched control | 
          108016 | 
        
        
          | CESS Treebanks | 
          7617080 | 
        
        
          | cfnai real time data | 
          5268348 | 
        
        
          | Chacha ami! | 
          18340 | 
        
        
          | Challenge : Day2 | 
          3195 | 
        
        
          | Challenge Data | 
          4722734 | 
        
        
          | Challenge day 1 | 
          7441975 | 
        
        
          | challenge_output_data_training | 
          93423 | 
        
        
          | Chance | 
          9292156 | 
        
        
          | Chance the Rapper Lyrics | 
          69613 | 
        
        
          | changed | 
          1025240 | 
        
        
          | Chapter2 | 
          2099 | 
        
        
          | chapter3-python | 
          789 | 
        
        
          | chapters | 
          557939 | 
        
        
          | char_num_dataset | 
          5670 | 
        
        
          | Character Encoding Examples | 
          970146 | 
        
        
          | Charguana | 
          364464 | 
        
        
          | #Charlottesville on Twitter | 
          186136781 | 
        
        
          | Chase Bank Branch Deposits, 2010-2016 | 
          975562 | 
        
        
          | Chat 80 | 
          63817 | 
        
        
          | Chat messages | 
          124927221 | 
        
        
          | Check 3x3 Sudoku is Valid | 
          719514 | 
        
        
          | Cheltenham Crime Data | 
          1053273 | 
        
        
          | Cheltenham's Facebook Groups | 
          61610188 | 
        
        
          | Chemical Health Effects and Toxicities | 
          1505141 | 
        
        
          | Chemical Substance Registry (CAS registry numbers) | 
          9752891 | 
        
        
          | Chennai Bus Route Data | 
          58992 | 
        
        
          | Chennai Bus Route Dataset | 
          59085 | 
        
        
          | chennai house pricing | 
          1270747 | 
        
        
          | Chess Black Wins | 
          1904072 | 
        
        
          | Chess Game Dataset (Lichess) | 
          7672655 | 
        
        
          | chestxraytest | 
          4979445554 | 
        
        
          | chestxraytrain | 
          7465411423 | 
        
        
          | Chewable | 
          5691 | 
        
        
          | chi-sqare | 
          31025 | 
        
        
          | Chicago - Citywide Payroll Data | 
          2269754 | 
        
        
          | Chicago census data by community area | 
          5709 | 
        
        
          | Chicago Crime | 
          376322518 | 
        
        
          | Chicago Crime Data | 
          15613459 | 
        
        
          | Chicago Red Light Violations | 
          48686731 | 
        
        
          | Chicago Restaurant Inspections | 
          184756352 | 
        
        
          | Chicago Taxi Rides 2016 | 
          2172282078 | 
        
        
          | Chicago Towing Records | 
          423464 | 
        
        
          | chicago_weather | 
          2864907 | 
        
        
          | Chicken | 
          1617 | 
        
        
          | chicks | 
          717 | 
        
        
          | Childhood Blood Lead Surveillance | 
          174623 | 
        
        
          | Chile Presidential Debate | 
          128810 | 
        
        
          | China RDP | 
          496782 | 
        
        
          | China RDP 2 | 
          496780 | 
        
        
          | China RDP v2 | 
          496780 | 
        
        
          | China RDPv2 | 
          496780 | 
        
        
          | Chinese Characters Generator | 
          209080186 | 
        
        
          | Chinese Delivery Drive | 
          58161 | 
        
        
          | Chinese Stocks | 
          224023 | 
        
        
          | chipotle | 
          364975 | 
        
        
          | Chipotle | 
          364975 | 
        
        
          | Chocolate Bar Ratings | 
          127723 | 
        
        
          | Choosing the best Feature | 
          63014 | 
        
        
          | Chosen ones | 
          1063529 | 
        
        
          | chris' face | 
          156004 | 
        
        
          | Christmas Tweets | 
          73584129 | 
        
        
          | Chronic Disease Indicators | 
          122899180 | 
        
        
          | Chronic illness: symptoms, treatments and triggers | 
          140920255 | 
        
        
          | Chronic KIdney Disease dataset | 
          48551 | 
        
        
          | Church Reuse Inventory | 
          85784 | 
        
        
          | churn classfication | 
          506359 | 
        
        
          | Churn datasets | 
          684858 | 
        
        
          | Churn in Telecom's dataset | 
          310007 | 
        
        
          | churn_ | 
          2191057242 | 
        
        
          | Churn_Basic | 
          635954 | 
        
        
          | Churn_Modelling | 
          684858 | 
        
        
          | Churned Users | 
          7439338 | 
        
        
          | churnModel | 
          684858 | 
        
        
          | churnTest | 
          51260725 | 
        
        
          | churnTrain | 
          53317710 | 
        
        
          | Cifar-10 | 
          170062354 | 
        
        
          | CIFAR10 | 
          169672749 | 
        
        
          | cifar10 | 
          170062600 | 
        
        
          | Cifar10 | 
          170062354 | 
        
        
          | cifar10 | 
          170062600 | 
        
        
          | cifar10 | 
          134 | 
        
        
          | cifar10 | 
          186213868 | 
        
        
          | CIFAR10 | 
          186213868 | 
        
        
          | cifarData | 
          141720199 | 
        
        
          | cifer 10 | 
          170550174 | 
        
        
          | Circadian Rhythm in the Brain | 
          1132336889 | 
        
        
          | City & Country | 
          79768 | 
        
        
          | City Database | 
          4096 | 
        
        
          | City Lines | 
          2547825 | 
        
        
          | City of Baltimore | 
          2804 | 
        
        
          | City of Baltimore Map | 
          2804 | 
        
        
          | City Payroll Data | 
          93050081 | 
        
        
          | Claim Close Gap | 
          52644037 | 
        
        
          | Claim Close Gap Prediction | 
          52644037 | 
        
        
          | Claims Data | 
          17545298 | 
        
        
          | Claims data_1 | 
          29407903 | 
        
        
          | ClaimsData | 
          17087291 | 
        
        
          | Clap Emoji in Tweets | 
          729749 | 
        
        
          | Clash royale Dataset | 
          4996 | 
        
        
          | Clash Royale Matches | 
          415441375 | 
        
        
          | Clásicos del fútbol Argentino | 
          54405 | 
        
        
          | class_order | 
          104653 | 
        
        
          | Class3a | 
          853 | 
        
        
          | Class4 | 
          949 | 
        
        
          | Class4B | 
          949 | 
        
        
          | Class4d | 
          949 | 
        
        
          | Classic Literature in ASCII | 
          129967536 | 
        
        
          | classification | 
          30775109 | 
        
        
          | Classification of Handwritten Letters | 
          76027645 | 
        
        
          | Classification of Student Evaluation data | 
          391968 | 
        
        
          | Classification_tutorial | 
          47370969 | 
        
        
          | Classified Ads for Cars | 
          419466302 | 
        
        
          | classified data | 
          194323 | 
        
        
          | classifier | 
          31679 | 
        
        
          | Classifying wine varieties | 
          10958 | 
        
        
          | classPredictions | 
          8164154 | 
        
        
          | clean_text | 
          52792929 | 
        
        
          | Cleaned lingerie data from different brands | 
          321457 | 
        
        
          | cleaned sentiment140 - not stemmed | 
          38974721 | 
        
        
          | Cleaned version of multipleChoiceResponses | 
          325692 | 
        
        
          | Cleaned Weather Dataset | 
          212218 | 
        
        
          | cleaned_ner_ds | 
          2679160 | 
        
        
          | cleaned_senitment140 | 
          9058119 | 
        
        
          | cleanTest | 
          29336 | 
        
        
          | cleanTrain | 
          59411 | 
        
        
          | cleanTrain | 
          59411 | 
        
        
          | Cleveland Cavaliers | 
          4494 | 
        
        
          | clf2_new | 
          142132 | 
        
        
          | click_here | 
          6347752 | 
        
        
          | Climate Change: Earth Surface Temperature Data | 
          600625277 | 
        
        
          | ClimateData | 
          3763 | 
        
        
          | Clinical | 
          3026295 | 
        
        
          | Clinical Trial data | 
          3026295 | 
        
        
          | Clinical Trials on Cancer | 
          186114041 | 
        
        
          | Clinical, Anthropometric & Bio-Chemical Survey | 
          335503326 | 
        
        
          | Cloth folding videos | 
          247633399 | 
        
        
          | clubName | 
          842879 | 
        
        
          | cluster_labels | 
          13769188 | 
        
        
          | clustering_basins | 
          6243 | 
        
        
          | Clustering_Excercise | 
          885172 | 
        
        
          | Clustering_Excercise2 | 
          6173 | 
        
        
          | CM_MATRIX | 
          916674 | 
        
        
          | CMAX applied to BRIC stock markets index | 
          10358 | 
        
        
          | CMP data set | 
          12670 | 
        
        
          | CMS Open Payments Dataset 2013 | 
          2470335100 | 
        
        
          | CMU Book Summary Dataset | 
          16815835 | 
        
        
          | CMU Dictionary | 
          3824638 | 
        
        
          | CMU Pronouncing Dictionary | 
          3618062 | 
        
        
          | cnn_18.18 | 
          240755 | 
        
        
          | cnn-text-classification-tf | 
          1238901 | 
        
        
          | CO2 PPM - Trends in Atmospheric Carbon Dioxide | 
          31745 | 
        
        
          | CO2-Emissions | 
          594201 | 
        
        
          | Coal Production Referenced from data.gov.in | 
          35225 | 
        
        
          | cobaaniris | 
          5107 | 
        
        
          | Cocacola en Youtube | 
          145943 | 
        
        
          | Cocktail Ingredients | 
          213123 | 
        
        
          | Code Mixed (Hindi-English) Dataset | 
          161013001 | 
        
        
          | Code of Federal Regulations | 
          351797510 | 
        
        
          | Code_echantillon | 
          1933 | 
        
        
          | Codechef Competitive Programming | 
          1263797927 | 
        
        
          | Coffee Drinking | 
          77 | 
        
        
          | Coffee Growing Countries | 
          16272 | 
        
        
          | Cognitive childs and their mothers | 
          11237 | 
        
        
          | coin_price | 
          1731985 | 
        
        
          | Colbert 1k | 
          4471428 | 
        
        
          | Coles and Woolworths Prices | 
          1048 | 
        
        
          | College Football Statistics | 
          33947123 | 
        
        
          | College Football/Basketball/Baseball Rankings | 
          60576679 | 
        
        
          | College life Missuri Institute | 
          11253 | 
        
        
          | College Scorecard Data 2007 2008 | 
          130651899 | 
        
        
          | College Scorecard Data 2008 2009 | 
          130555114 | 
        
        
          | College Scorecard Data 2009 2010 | 
          135807805 | 
        
        
          | College Scorecard Data 2010 2011 | 
          138657071 | 
        
        
          | College Scorecard Data 2011 2012 | 
          145137728 | 
        
        
          | College Scorecard Data 2012 2013 | 
          147074999 | 
        
        
          | College Scorecard Data 2013 2014 | 
          145836006 | 
        
        
          | Colombian Coffee 2016 | 
          125272 | 
        
        
          | Colonia Corpus of Historical Portuguese | 
          79996432 | 
        
        
          | Color terms dataset | 
          5401 | 
        
        
          | color_image | 
          170062512 | 
        
        
          | color1_image | 
          170062512 | 
        
        
          | Colorado Shelter Euthanasia Animation DB | 
          384812 | 
        
        
          | Column label | 
          703 | 
        
        
          | Column labels | 
          705 | 
        
        
          | combination1 | 
          537890 | 
        
        
          | combine | 
          314968789 | 
        
        
          | combined wine data | 
          448109 | 
        
        
          | Combined_candy_usip | 
          15706 | 
        
        
          | COMBO-17 Galaxy Dataset | 
          1714279 | 
        
        
          | Comcast Consumer Complaints | 
          11476961 | 
        
        
          | COMET COMDS0x | 
          348074 | 
        
        
          | Comic Books Images | 
          2425186250 | 
        
        
          | comments | 
          1068768 | 
        
        
          | CommentsData | 
          15132 | 
        
        
          | Commercial Bank Failures, 1934-Present | 
          405611 | 
        
        
          | Commercial Paper | 
          1354785 | 
        
        
          | Commercial Register Estonia | 
          43842273 | 
        
        
          | commit_ridge | 
          6359598 | 
        
        
          | Common Brazilian Names and Gender | 
          74389 | 
        
        
          | Common Voice | 
          12902930268 | 
        
        
          | Commuter train timetable | 
          163399031 | 
        
        
          | Commuter train timetable | 
          163399031 | 
        
        
          | CoMNIST | 
          110594455 | 
        
        
          | compacts | 
          30946962 | 
        
        
          | Company Sentiment by Location | 
          58693020 | 
        
        
          | company_credit_rating_normalized_sp | 
          1117373 | 
        
        
          | Comparative Sentences | 
          774200 | 
        
        
          | Comparing Numerical Movie Review Scores | 
          15728 | 
        
        
          | Comparing RF and the multi-output meta estimator¶ | 
          3631 | 
        
        
          | COMPAS Recidivism Racial Bias | 
          23722513 | 
        
        
          | Compb17 | 
          3152016 | 
        
        
          | compet | 
          35831972 | 
        
        
          | Competetition-1 | 
          17022819 | 
        
        
          | Compiled_Ether_Data_Set | 
          83743 | 
        
        
          | Complete Ayah Dataset  | 
          3586177 | 
        
        
          | complete dataset | 
          2304856 | 
        
        
          | Complete FIFA 2017 Player dataset (Global) | 
          8979684 | 
        
        
          | Complete Historical Cryptocurrency Financial Data | 
          2262400 | 
        
        
          | completedata | 
          11590849 | 
        
        
          | CompleteData | 
          726926 | 
        
        
          | completeData | 
          80558031 | 
        
        
          | Computer Network Traffic | 
          429946 | 
        
        
          | Computer Parts Dataset (CPU, GPU, HDD...) | 
          1407971 | 
        
        
          | ComTrans Corpus Sample | 
          35387522 | 
        
        
          | ConceptNet | 
          718225 | 
        
        
          | Concrete Compressive Strength Data Set | 
          59010 | 
        
        
          | Congress Trump Score | 
          2496860 | 
        
        
          | congressEducation | 
          34625 | 
        
        
          | Congressional Election Disbursements | 
          1060333799 | 
        
        
          | Congressional Voting Records | 
          534603056 | 
        
        
          | CONLL Corpora | 
          17680836 | 
        
        
          | Conmebol_Russia2018Qualifiers | 
          11677 | 
        
        
          | Connecticut inmates awaiting trial | 
          120135212 | 
        
        
          | conormacbride | 
          224080 | 
        
        
          | Consonance and Dissonance Results | 
          9663 | 
        
        
          | Consumer Business Complaints in Brazil | 
          425961054 | 
        
        
          | Consumer Price Index | 
          66123274 | 
        
        
          | Consumer Price Index by Year since 1913 | 
          1170 | 
        
        
          | Consumer Price Index in Denver, CO | 
          3509989 | 
        
        
          | Consumer Reviews of Amazon Products | 
          18386219 | 
        
        
          | Consumo de energia | 
          6518 | 
        
        
          | ConsumoRefrigerador | 
          6365897 | 
        
        
          | Consumption of fuels used to generate electricity | 
          797251 | 
        
        
          | Contribuintes ativos por UF | 
          54027 | 
        
        
          | Contributions to Presidential Campaigns (real) | 
          22820098 | 
        
        
          | control_data | 
          1125 | 
        
        
          | conver | 
          1696200 | 
        
        
          | Conversation JSON | 
          3881 | 
        
        
          | ConversationAI | 
          83578341 | 
        
        
          | ConversationAIDataset | 
          83578341 | 
        
        
          | Cook County Asset Forfeiture (Chicago, IL) | 
          3163876 | 
        
        
          | coolest | 
          287728 | 
        
        
          | Coordinates Map | 
          847 | 
        
        
          | coordinates-country | 
          87122 | 
        
        
          | copy of santa gift matching dataset | 
          19059086 | 
        
        
          | Copy of wikipedia-language-iso639 | 
          2519 | 
        
        
          | corn.csv | 
          11979 | 
        
        
          | Corporacion Favorita unpacked | 
          127861780 | 
        
        
          | Corporate Prosecution Registry | 
          946178 | 
        
        
          | corporita-sampled train data | 
          518253183 | 
        
        
          | Corpus of bilingual children's speech | 
          956206 | 
        
        
          | Corpus of Brazilian Portuguese Literature | 
          23629080 | 
        
        
          | correct_submission | 
          9978 | 
        
        
          | Correlates of War: Interstate Wars | 
          107046 | 
        
        
          | Correlates of War: World Religions | 
          642238 | 
        
        
          | Correlation Solutions | 
          50606111 | 
        
        
          | Corruption Perceptions Index | 
          23204 | 
        
        
          | Council Plan performance indicators | 
          77489 | 
        
        
          | Count1 | 
          9704 | 
        
        
          | Counties geographic coordinates | 
          8601 | 
        
        
          | Counties with Smoking Ban | 
          3984620 | 
        
        
          | Countires and number of respondents | 
          312634 | 
        
        
          | Countries | 
          1346 | 
        
        
          | Countries and number of respondents spatial object | 
          312634 | 
        
        
          | Countries Info | 
          60799 | 
        
        
          | Countries ISO Codes | 
          9451 | 
        
        
          | Countries of the World | 
          256950 | 
        
        
          | Countries Population | 
          134321 | 
        
        
          | Countries Shape Files | 
          9146048 | 
        
        
          | countries_lon_lat | 
          1702 | 
        
        
          | country code | 
          4166 | 
        
        
          | country continent codes | 
          5224 | 
        
        
          | Country Profile | 
          4918 | 
        
        
          | Country Silhouette Images | 
          817318 | 
        
        
          | Country Socioeconomic Status Scores, Part II | 
          92201 | 
        
        
          | Country Socioeconomic Status Scores: 1880-2010 | 
          118350 | 
        
        
          | country-cordinates | 
          87122 | 
        
        
          | County Smoking Ban | 
          3569 | 
        
        
          | County_W_SM_Ban | 
          437136 | 
        
        
          | Course transaction | 
          2894492 | 
        
        
          | Coursera - Machine Learning - SU | 
          8024 | 
        
        
          | Coursera Data Science Capstone Datasets | 
          493860249 | 
        
        
          | courseraloan | 
          20322341 | 
        
        
          | courses_20171206 | 
          143520 | 
        
        
          | Coursework2 | 
          4206156 | 
        
        
          | Cousin Marriage Data | 
          933 | 
        
        
          | cp_1month | 
          54460905 | 
        
        
          | cprofiling_1 | 
          2505853 | 
        
        
          | CPU Data Cleaned | 
          1095 | 
        
        
          | CPU Utilization Data | 
          11597 | 
        
        
          | Craft Beers Dataset | 
          182596 | 
        
        
          | Crashes 2014 | 
          81635508 | 
        
        
          | Crashes 2014 csv | 
          134853071 | 
        
        
          | creativity | 
          566778 | 
        
        
          | Credit Card Applications | 
          35641 | 
        
        
          | Credit Card Data from book "Econometric Analysis" | 
          73250 | 
        
        
          | Credit Card Fraud Detection | 
          150828752 | 
        
        
          | credit_card_database | 
          6632243 | 
        
        
          | credit-bank-data | 
          133638 | 
        
        
          | creditcard | 
          150828752 | 
        
        
          | CreditScores | 
          4672098 | 
        
        
          | CreditTestData | 
          4983329 | 
        
        
          | Crescimento da População Brasileira | 
          1266 | 
        
        
          | Cricinfo Statsguru Data | 
          2721164 | 
        
        
          | Cricketer Info From espncricinfo | 
          8716715 | 
        
        
          | crime senior citizen | 
          12848 | 
        
        
          | crime against women in India | 
          249856 | 
        
        
          | crime analysis | 
          10620 | 
        
        
          |  crime analysis | 
          27719 | 
        
        
          | crime analysis | 
          11788 | 
        
        
          | Crime analysis | 
          9463 | 
        
        
          | crime classifcication | 
          107979 | 
        
        
          | Crime Classification dataset | 
          407663 | 
        
        
          | Crime committed against Senior citizen | 
          11788 | 
        
        
          | Crime Data in Brazil | 
          842874744 | 
        
        
          | Crime in Baltimore | 
          41173772 | 
        
        
          | Crime in Bulgaria, 2000 to 2014 | 
          135102 | 
        
        
          | Crime in Context, 1975-2015 | 
          263935 | 
        
        
          | Crime in India | 
          12841047 | 
        
        
          | Crime in Los Angeles | 
          377870521 | 
        
        
          | Crime in the U.S. | 
          186880 | 
        
        
          | Crime in Vancouver | 
          58924580 | 
        
        
          | Crime Investigation | 
          14026 | 
        
        
          | crime report | 
          88064 | 
        
        
          | Crime Statistics for South Africa | 
          24559707 | 
        
        
          | crimean | 
          663701 | 
        
        
          | crimecsv | 
          12848 | 
        
        
          | crimenbogota | 
          593186 | 
        
        
          | Crimes Committed in France | 
          98316 | 
        
        
          | Crimes de São Francisco | 
          23670377 | 
        
        
          | Crimes in Chicago | 
          1991120451 | 
        
        
          | Criminal | 
          1584533 | 
        
        
          | Criminal | 
          1563180 | 
        
        
          | Criminal Dataset | 
          1584533 | 
        
        
          | Criminal DataSet | 
          1584621 | 
        
        
          | criminal_train | 
          1584533 | 
        
        
          | Criminals | 
          1584533 | 
        
        
          | Criminals  | 
          1584533 | 
        
        
          | crittical | 
          294163 | 
        
        
          | Crop Data Analysis | 
          698951 | 
        
        
          | Crop Nutrient Database | 
          287615 | 
        
        
          | Cross-position activity recognition | 
          83372747 | 
        
        
          | Cross-sell: target the right customer | 
          206939073 | 
        
        
          | CrowdAnalytx_Tennis_pREDICTION | 
          832353 | 
        
        
          | Crowdedness at the Campus Gym | 
          3447605 | 
        
        
          | Crowdfunding Data (Reg CF) | 
          329917 | 
        
        
          | crttical | 
          294163 | 
        
        
          | Crubadan | 
          11256183 | 
        
        
          | crunchbase_monthly1 | 
          1706822 | 
        
        
          | Crypto | 
          14827433 | 
        
        
          | crypto | 
          24717 | 
        
        
          | Crypto Currencies | 
          2855340 | 
        
        
          | Crypto Currencies | 
          2341674 | 
        
        
          | Cryptocoins Historical Prices | 
          20518707 | 
        
        
          | Cryptocurrencies | 
          9049796 | 
        
        
          | Cryptocurrencies Price  | 
          210068 | 
        
        
          | Cryptocurrency Data | 
          2271662 | 
        
        
          | Cryptocurrency Historical Data | 
          648785 | 
        
        
          | Cryptocurrency Historical Prices | 
          1708056 | 
        
        
          | Cryptocurrency Market Capitalizations | 
          143774 | 
        
        
          | Cryptocurrency pricing recent history | 
          5513413 | 
        
        
          | CryptoCurrency Trade History | 
          326560906 | 
        
        
          | CS 405 NLP | 
          67479286 | 
        
        
          | CS_MIT_6.00x_2012_NON_US_Students | 
          4559876 | 
        
        
          | CS_MIT_US | 
          1736515 | 
        
        
          | CS:GO Competitive Matchmaking Data | 
          384043159 | 
        
        
          | CS228 Materials on python | 
          59309 | 
        
        
          | CSC 630 Datasets | 
          201869670 | 
        
        
          | csd.123 | 
          216 | 
        
        
          | csd1234 | 
          189 | 
        
        
          | csd1234 | 
          731 | 
        
        
          | csd12345 | 
          731 | 
        
        
          | csl406 | 
          103642069 | 
        
        
          | csv format | 
          1180166 | 
        
        
          | csv_inception | 
          7942529 | 
        
        
          | CT Accidental Drug Related Deaths 2012-June 2017 | 
          802658 | 
        
        
          | CT Medical Image Analysis Tutorial | 
          458149327 | 
        
        
          | CTGData | 
          181381 | 
        
        
          | Cuff-Less Blood Pressure Estimation | 
          5281643644 | 
        
        
          | Cuneiform Digital Library Initiative | 
          201318316 | 
        
        
          | curated_stackoverflow_dataset_for_Q_&_A | 
          349299 | 
        
        
          | CuratedDataSource | 
          37321171 | 
        
        
          | Currencies | 
          1708058 | 
        
        
          | currency name | 
          6624 | 
        
        
          | Current Population Survey | 
          314148794 | 
        
        
          | Current Properati Listing Information | 
          486186644 | 
        
        
          | Cuss words and Deaths in Quentin Tarantino Films | 
          63940 | 
        
        
          | Custom data | 
          22450588 | 
        
        
          | custom_layers | 
          5306 | 
        
        
          | CUSTOMER CHURN | 
          977501 | 
        
        
          | customer churn | 
          1192408760 | 
        
        
          | Customer Churn | 
          26402063 | 
        
        
          | Customer Data | 
          2682651 | 
        
        
          | Customer Predictive Analysis | 
          329217 | 
        
        
          | Customer Support on Twitter | 
          175038646 | 
        
        
          | Customer Visits Data | 
          13718 | 
        
        
          | Customers | 
          45420 | 
        
        
          | Customers Data | 
          237238 | 
        
        
          | Customers final | 
          237238 | 
        
        
          | Customers Visits | 
          13712 | 
        
        
          | CUSTOMPLOT | 
          940 | 
        
        
          | cusume_layer | 
          7623 | 
        
        
          | cusume_layers | 
          8680 | 
        
        
          | Cyber crime | 
          663701 | 
        
        
          | Cyber Crime Motives - India 2013 | 
          2628 | 
        
        
          | Cycle of grass growth | 
          8658 | 
        
        
          | Cycle Share Dataset | 
          47724176 | 
        
        
          | D_test | 
          28629 | 
        
        
          | D_train | 
          61194 | 
        
        
          | D.C. Metrorail Transportation Ridership Data | 
          1240025 | 
        
        
          | D00001 | 
          5733501 | 
        
        
          | DACA Recipients | 
          1265698 | 
        
        
          | dae test | 
          9825 | 
        
        
          | Daikon (Diachronic Corpus) | 
          118301154 | 
        
        
          | Daily and Intraday Stock Price Data | 
          437898965 | 
        
        
          | Daily Fantasy Basketball - DraftKings NBA | 
          130299509 | 
        
        
          | Daily Happiness & Employee Turnover | 
          51605003 | 
        
        
          | Daily minimum temperatures | 
          68050 | 
        
        
          | Daily News for Stock Market Prediction | 
          14884372 | 
        
        
          | Daily returns for Apple and Microsoft stock | 
          173351 | 
        
        
          | Daily Sea Ice Extent Data | 
          4491537 | 
        
        
          | Daily views in Netflix | 
          22958 | 
        
        
          | Dairy Hub Baseline and Scooping survey Embu | 
          121313 | 
        
        
          | Dairy Hub Baseline Survey, Nyandarua | 
          149430 | 
        
        
          | Dairy Hubs Baseline and Scooping survey-UasinGishu | 
          978624 | 
        
        
          | Dallas Police Department Reported Incidents | 
          197281346 | 
        
        
          | damiiii | 
          23930 | 
        
        
          | Danube Water Quality Monitoring data | 
          59819810 | 
        
        
          | Dark Destiny(in development) | 
          60631 | 
        
        
          | Dark Net Marketplace Data (Agora 2014-2015) | 
          8071801 | 
        
        
          | Darknet Market Cocaine Listings | 
          806564 | 
        
        
          | Data Product Name Lazada Indonesia | 
          833473 | 
        
        
          | data 1-train | 
          32828332 | 
        
        
          | Data Analysis Assessment | 
          5986954 | 
        
        
          | Data Exploration | 
          249117780 | 
        
        
          | Data exploration energy prediction | 
          1185330 | 
        
        
          | Data for mc | 
          261912642 | 
        
        
          | Data for my self-learning | 
          217812 | 
        
        
          | Data for public services on Brazil | 
          4088603 | 
        
        
          | Data from OBD (On Board Diagnostics) | 
          233512 | 
        
        
          | Data from worlds 2017 | 
          773365 | 
        
        
          | Data Lab | 
          2558105 | 
        
        
          | Data Management Dataset | 
          566778 | 
        
        
          | Data Newb or is it Noob, sorry, I'm new to this | 
          373764 | 
        
        
          | Data of GDP for all countries | 
          662372 | 
        
        
          | Data Preprocessing | 
          226 | 
        
        
          | Data s | 
          7314359 | 
        
        
          | Data sample | 
          40478505 | 
        
        
          | Data Science | 
          2321526 | 
        
        
          | Data Science Jobs around the world | 
          1636642 | 
        
        
          | Data Science London + Scikit-learn | 
          1971469 | 
        
        
          | Data Scientist Survey Project | 
          7938934 | 
        
        
          | Data Scientists by countries | 
          312634 | 
        
        
          | Data Scientists vs Size of Datasets | 
          5917 | 
        
        
          | data sensors | 
          3647432 | 
        
        
          | Data Set | 
          61194 | 
        
        
          | data set  | 
          377414237 | 
        
        
          | data set for happines | 
          29536 | 
        
        
          | data set for yelp | 
          477907 | 
        
        
          | Data set to predict Conversion Rate | 
          6863400 | 
        
        
          | Data Sets | 
          93081 | 
        
        
          | Data Shares Updated | 
          1925039 | 
        
        
          | data source | 
          196737128 | 
        
        
          | Data Stories of US Airlines, 1987-2008 | 
          5732078 | 
        
        
          | Data test | 
          28314435 | 
        
        
          | data test for python | 
          62792 | 
        
        
          | Data upload test | 
          17498477 | 
        
        
          | Data Visualization Final Project | 
          863606 | 
        
        
          | Data Wilayah Republic Indonesia | 
          2701722 | 
        
        
          | Data Wrangling | 
          809 | 
        
        
          | _data_ | 
          189979994 | 
        
        
          | Data__3 | 
          1810756 | 
        
        
          | data_banknote_authentication | 
          45030 | 
        
        
          | data_extract | 
          196737128 | 
        
        
          | data_final1 | 
          4045017 | 
        
        
          | data_final2 | 
          4044975 | 
        
        
          | data_final3 | 
          4045041 | 
        
        
          | data_final4 | 
          4045084 | 
        
        
          | data_img | 
          221091747 | 
        
        
          | Data_load | 
          196737128 | 
        
        
          | data_new | 
          60033 | 
        
        
          | data_properties | 
          11510318 | 
        
        
          | Data_resume | 
          4309778 | 
        
        
          | Data_Schizo | 
          215922329 | 
        
        
          | Data_Set | 
          269807 | 
        
        
          | Data_set_for default_creditors. | 
          72420922 | 
        
        
          | data_sms | 
          5984996 | 
        
        
          | data_sn | 
          7305227 | 
        
        
          | Data_titanic_disater_prediction | 
          61194 | 
        
        
          | data_train_tita | 
          61194 | 
        
        
          | data_with_all_conts | 
          8301811 | 
        
        
          | data_x1 | 
          4045075 | 
        
        
          | data_x2 | 
          4045013 | 
        
        
          | data-mercari | 
          196737128 | 
        
        
          | data-salary.txt | 
          149 | 
        
        
          | Data-Siebel | 
          1179612 | 
        
        
          | data.csv | 
          256585 | 
        
        
          | data.csv | 
          125204 | 
        
        
          | data.txt | 
          18732 | 
        
        
          | data1.csv | 
          125204 | 
        
        
          | Data10 | 
          1810753 | 
        
        
          | data10000 | 
          967307 | 
        
        
          | data111 | 
          2176079 | 
        
        
          | data1111 | 
          2176079 | 
        
        
          | data12 | 
          170760 | 
        
        
          | data12017 | 
          673800536 | 
        
        
          | data2.csv | 
          125204 | 
        
        
          | data2017 | 
          673800536 | 
        
        
          | data201712 | 
          4163417 | 
        
        
          | DATA2here | 
          11899 | 
        
        
          | data4deshawcode | 
          78381308 | 
        
        
          | dataaa | 
          29420 | 
        
        
          | Database of Android Apps | 
          84000942 | 
        
        
          | database.sqlite | 
          34297213 | 
        
        
          | database.sqlite | 
          313090048 | 
        
        
          | database2 | 
          45056 | 
        
        
          | DataBundle | 
          182428995 | 
        
        
          | DataCampTraining(Titanic) | 
          2843 | 
        
        
          | datadata | 
          196737128 | 
        
        
          | datadata1 | 
          4558 | 
        
        
          | DataExample | 
          531 | 
        
        
          | DataExoTrain | 
          30534811 | 
        
        
          | DataForProject | 
          287859225 | 
        
        
          | DataForTesting | 
          85723 | 
        
        
          | DataImager Dataset | 
          48183945 | 
        
        
          | datainput1 | 
          1135215 | 
        
        
          | datainput2 | 
          1136571 | 
        
        
          | datairis | 
          5107 | 
        
        
          | Datalearning | 
          5 | 
        
        
          | Datamining | 
          3119593 | 
        
        
          | datams1 | 
          674950 | 
        
        
          | datanew | 
          335 | 
        
        
          | datanews | 
          11899 | 
        
        
          | dataout2017 | 
          273386 | 
        
        
          | datasci101 | 
          34682 | 
        
        
          | Datascience Universities across US | 
          350113 | 
        
        
          | DataSeer | 
          29170333 | 
        
        
          | dataseparation | 
          33720022 | 
        
        
          | dataset | 
          196737128 | 
        
        
          | dataset | 
          64080981 | 
        
        
          | Dataset | 
          171048828 | 
        
        
          | dataset | 
          188114545 | 
        
        
          | dataset | 
          1908375 | 
        
        
          | dataset | 
          1270 | 
        
        
          | Dataset | 
          196737128 | 
        
        
          | dataset | 
          4388554 | 
        
        
          | dataset | 
          2198879 | 
        
        
          | dataset | 
          61194 | 
        
        
          | dataset | 
          26881506 | 
        
        
          | dataset | 
          1145608 | 
        
        
          | dataset | 
          196737128 | 
        
        
          | dataset | 
          18762 | 
        
        
          | dataset | 
          55152040 | 
        
        
          | DataSet | 
          5104423 | 
        
        
          | DataSet | 
          196737128 | 
        
        
          | dataset | 
          37819635 | 
        
        
          | dataset | 
          469399139 | 
        
        
          | dataset | 
          464472240 | 
        
        
          | dataset | 
          2304944 | 
        
        
          | dataset | 
          11986629 | 
        
        
          | dataset | 
          1968558 | 
        
        
          | dataset | 
          344589708 | 
        
        
          | Dataset | 
          341425901 | 
        
        
          | dataSet | 
          93081 | 
        
        
          | Dataset | 
          515387 | 
        
        
          | Dataset | 
          77123 | 
        
        
          | dataset | 
          1155353 | 
        
        
          | dataset | 
          322390820 | 
        
        
          | DataSet | 
          48706 | 
        
        
          | Dataset | 
          10307653 | 
        
        
          | Dataset - Udacity's Intro to Data Analysis course | 
          946272 | 
        
        
          | dataset by mistake | 
          3295644 | 
        
        
          | dataset compete | 
          2304944 | 
        
        
          | Dataset for 2016 US Election  | 
          24845711 | 
        
        
          | Dataset For Bayesian Classifier | 
          2423318 | 
        
        
          | Dataset for collaborative filters | 
          31250807 | 
        
        
          | Dataset for HMM Clustering | 
          2379723 | 
        
        
          | Dataset for Insect Sound | 
          2617200 | 
        
        
          | Dataset for Mercari Competition | 
          134964916 | 
        
        
          | Dataset for Mercari Competition_test | 
          61772212 | 
        
        
          | Dataset for Various Classification Algorithm | 
          2290261 | 
        
        
          | Dataset for Various Clustering Algorithm | 
          2367761 | 
        
        
          | Dataset malware/beningn permissions Android | 
          276896 | 
        
        
          | Dataset of customer purchase | 
          35123906 | 
        
        
          | Dataset of SMS messages | 
          515387 | 
        
        
          | Dataset of Standard cards Magic:The Gathering | 
          379802 | 
        
        
          | Dataset on company clients satisfaction | 
          545 | 
        
        
          | Dataset tryout | 
          24 | 
        
        
          | Dataset v2 coma | 
          415597 | 
        
        
          | DataSet Vinos | 
          12306 | 
        
        
          | DATASET WINE | 
          11394 | 
        
        
          | DataSet_Analytics102 | 
          1397246 | 
        
        
          | dataset_clientes | 
          734853 | 
        
        
          | dataset_entre | 
          3640989 | 
        
        
          | Dataset_mercari_descompactado | 
          196737128 | 
        
        
          | dataset_sup | 
          9199904 | 
        
        
          | dataset_unzip_mercari | 
          196737128 | 
        
        
          | dataset- kaggle | 
          196737128 | 
        
        
          | DataSet(Traffic flow) | 
          2283861 | 
        
        
          | Dataset0 | 
          2434632 | 
        
        
          | dataset1 | 
          18762 | 
        
        
          | Dataset1 | 
          2605105 | 
        
        
          | dataset12 | 
          18762 | 
        
        
          | Dataset123 | 
          99895 | 
        
        
          | dataset2 | 
          23654760 | 
        
        
          | dataset2 | 
          7327877 | 
        
        
          | Dataset2 | 
          2863661 | 
        
        
          | dataset3 | 
          7318232 | 
        
        
          | dataset44 | 
          45821350 | 
        
        
          | Dataset8 | 
          64097906 | 
        
        
          | DatasetDataset | 
          18217460 | 
        
        
          | datasethere | 
          1302 | 
        
        
          | DataSetPartidos | 
          2747380 | 
        
        
          | Datasets for ISRL | 
          582659 | 
        
        
          | datasets of iceberg | 
          302435 | 
        
        
          | Datasets-Extras-Gobierno-Ciudad | 
          73169216 | 
        
        
          | datasets-uci-breast-cancer | 
          141096 | 
        
        
          | Datasets1 | 
          162534349 | 
        
        
          | DatasetStacking | 
          391381 | 
        
        
          | DatasetTest | 
          2058061 | 
        
        
          | DataSetTitanic | 
          89823 | 
        
        
          | datasettop | 
          151646 | 
        
        
          | DatasetTrain | 
          391381 | 
        
        
          | datasource1 | 
          19546258 | 
        
        
          | datasource2 | 
          4132092 | 
        
        
          | datasource3 | 
          18624463 | 
        
        
          | datastockindex | 
          8460361 | 
        
        
          | datastocks | 
          44603115 | 
        
        
          | datatest | 
          4163417 | 
        
        
          | datatest_R | 
          4163417 | 
        
        
          | datawithusers | 
          226 | 
        
        
          | date_info_same_dow | 
          3530 | 
        
        
          | datos_titanic | 
          89823 | 
        
        
          | Datset under development | 
          172104359 | 
        
        
          | Day One CSV File | 
          7549 | 
        
        
          | DBDA2-ja | 
          2059 | 
        
        
          | DBLPTrainset | 
          639795 | 
        
        
          | dc h1b | 
          99611854 | 
        
        
          | DC Metro Crime Data | 
          113933745 | 
        
        
          | DCAD data | 
          428969136 | 
        
        
          | dcnn fhv lee 15k 4 | 
          8204027 | 
        
        
          | DCNN fhv lee 16 | 
          7334532 | 
        
        
          | DCNN fhv lee12 | 
          7619172 | 
        
        
          | dcnn fhv lee16 | 
          7334532 | 
        
        
          | DCNN fhv Lee4 | 
          8092963 | 
        
        
          | DCNN fhv lee8 | 
          7998286 | 
        
        
          | DCNN IE Aug part | 
          8075475 | 
        
        
          | DCNN model | 
          24837626 | 
        
        
          | DCNN model18 | 
          7974710 | 
        
        
          | dddddd | 
          16920430 | 
        
        
          | dddddddd | 
          53967 | 
        
        
          | ddddddddddddddd | 
          5993 | 
        
        
          | dddddddddddddddddddd | 
          16974329 | 
        
        
          | ddffdssd | 
          5993 | 
        
        
          | DDLJ 666 | 
          855780 | 
        
        
          | DE Temp EC | 
          222623 | 
        
        
          | DEA Drug Slang Code Words | 
          22092 | 
        
        
          | Deadly traffic accidents in the UK (2015) | 
          19235021 | 
        
        
          | dear genie kickstarter | 
          25608454 | 
        
        
          | Death in the United States | 
          4334522180 | 
        
        
          | Death Metal | 
          74263119 | 
        
        
          | Deaths related to the Northern Ireland conflict | 
          477805 | 
        
        
          | dec_numerai | 
          103040127 | 
        
        
          | Deceptive Opinion Spam Corpus | 
          1349623 | 
        
        
          | DecisionTree | 
          974484 | 
        
        
          | DeconstructedGTD | 
          21059917 | 
        
        
          | Deep Learning A-Z - ANN dataset | 
          684858 | 
        
        
          | Deep Sea Corals | 
          146105985 | 
        
        
          | Deep-NLP | 
          679231 | 
        
        
          | deeplearning | 
          684858 | 
        
        
          | defaite | 
          7533658 | 
        
        
          | defaite2 | 
          4760019 | 
        
        
          | Default of Credit Card Clients Dataset | 
          2862995 | 
        
        
          | DELETE | 
          403343 | 
        
        
          | delete_zero_price_item1 | 
          7361212 | 
        
        
          | DELETED | 
          315905791 | 
        
        
          | Delhi Weather Data | 
          6652900 | 
        
        
          | Delpher Dutch Newspaper Archive (1618-1699) | 
          150761642 | 
        
        
          | delta_pred | 
          2967586 | 
        
        
          | demo_model | 
          530993226 | 
        
        
          | demofile | 
          1271 | 
        
        
          | DemographicData | 
          8360 | 
        
        
          | Demographics  | 
          1022 | 
        
        
          | demonetisation-tweet | 
          919538 | 
        
        
          | demonetizatiom | 
          231571 | 
        
        
          | Demonetization in India | 
          40572843 | 
        
        
          | Demonetization in India Twitter Data | 
          5258200 | 
        
        
          | Demonetization talk on Twitter | 
          92171087 | 
        
        
          | Demonetizing Rupee | 
          27822361 | 
        
        
          | DemoProject | 
          54 | 
        
        
          | demoset | 
          135919418 | 
        
        
          | deng-dataset | 
          41591408 | 
        
        
          | Dengue cases | 
          52153 | 
        
        
          | Dengue cases | 
          52153 | 
        
        
          | dengue cases 1 | 
          52153 | 
        
        
          | Dengue Cases in the Philippines | 
          52153 | 
        
        
          | dense child matrix | 
          303897380 | 
        
        
          | DenseEP10B1B2IMDG | 
          255821 | 
        
        
          | DenseNet-121 | 
          30330932 | 
        
        
          | DenseNet-161 | 
          110722606 | 
        
        
          | DenseNet-169 | 
          54060694 | 
        
        
          | DenseNet-201 | 
          76541998 | 
        
        
          | Densnet121+fine tuning | 
          30311364 | 
        
        
          | Denver International Airport | 
          34599 | 
        
        
          | Dependency Penn Treebank | 
          1069540 | 
        
        
          | Depth Generation - Lightfield Imaging | 
          202078164 | 
        
        
          | derfff | 
          7978017 | 
        
        
          | Derivation | 
          562394592 | 
        
        
          | Derivation | 
          562394592 | 
        
        
          | Derivatives Trading | 
          1122607 | 
        
        
          | dernier | 
          440983 | 
        
        
          | des2017 | 
          78381308 | 
        
        
          | Describing New York City Roads | 
          23009781 | 
        
        
          | descripciones1-tpdatos | 
          317372677 | 
        
        
          | descripciones2-tpdatos | 
          386955524 | 
        
        
          | descripe | 
          13788274 | 
        
        
          | Descript_Meta | 
          16094554 | 
        
        
          | Despesas Notas de Empenho | 
          15570511 | 
        
        
          | Detailed data from italian Serie A | 
          23656 | 
        
        
          | Detailed NFL Play-by-Play Data 2009-2016 | 
          70282651 | 
        
        
          | Detailed NFL Play-by-Play Data 2015 | 
          15488579 | 
        
        
          | details | 
          44502 | 
        
        
          | Details of resigned employees from Jan-17 | 
          53547 | 
        
        
          | Details of Resigned Employees from Jan-2017 | 
          71724 | 
        
        
          | Determine the pattern of Tuberculosis spread | 
          871348 | 
        
        
          | Devanagari Character Dataset | 
          9834839 | 
        
        
          | Devanagari Character Dataset Large | 
          66308602 | 
        
        
          | Devanagari Character Set | 
          126630805 | 
        
        
          | Developers and programming languages | 
          6734627 | 
        
        
          | DFFF blood | 
          215899084 | 
        
        
          | dfffflfl | 
          5993 | 
        
        
          | dfgvbhnjk | 
          103 | 
        
        
          | dftarin | 
          45719119 | 
        
        
          | dftrain | 
          68371984 | 
        
        
          | Diabetes | 
          30474 | 
        
        
          | Diabetes 130 US hospitals for years 1999-2008 | 
          20652298 | 
        
        
          | Diabetes Analysis1 | 
          1147017 | 
        
        
          | Diabetes by Demographies | 
          2658 | 
        
        
          | diabetes_columns | 
          14875 | 
        
        
          | diabetes.csv | 
          23873 | 
        
        
          | Diabetic | 
          3314579 | 
        
        
          | Diabetic Foot Pressure Analysis | 
          62033419 | 
        
        
          | diabities | 
          174158 | 
        
        
          | diabities | 
          4787 | 
        
        
          | Diagnose Specific Language Impairment in Children | 
          632972 | 
        
        
          | Dialogues | 
          7654 | 
        
        
          | Diamonds | 
          3192560 | 
        
        
          | diamonds_arun | 
          9740 | 
        
        
          | Dictionary | 
          1185995 | 
        
        
          | dictionary & baseline generated from external data | 
          170033045 | 
        
        
          | Dictionary for Sentiment Analysis | 
          1052 | 
        
        
          | Dictionary of American Regional English (DAREDS) | 
          657924 | 
        
        
          | dictionary1 | 
          34685 | 
        
        
          | dictss | 
          1799 | 
        
        
          | Did it rain in Seattle? (1948-2017) | 
          761976 | 
        
        
          | different from our method of SFE | 
          14030378 | 
        
        
          | different submission files | 
          114549146 | 
        
        
          | Diffusion Mapping for Drug Combinations  | 
          5483535 | 
        
        
          | DigiDB Dataset | 
          59898 | 
        
        
          | DigiDB_digimonlist | 
          15354 | 
        
        
          | Digimon Database | 
          59898 | 
        
        
          | Digit Recognition | 
          7502265 | 
        
        
          | Digital Media | 
          695185 | 
        
        
          | DigitRecognition | 
          7502265 | 
        
        
          | digits dataset | 
          264712 | 
        
        
          | Dilma impeachment Twitter Raw Data | 
          6280924 | 
        
        
          | Diplomacy Betrayal Dataset | 
          53056025 | 
        
        
          | Disaster/Accident Sources | 
          2406589 | 
        
        
          | Discourse Acts on Reddit | 
          54391204 | 
        
        
          | Discurso Macri (inauguracion Metrobus del bajo) | 
          4753 | 
        
        
          | disease | 
          960 | 
        
        
          | Diseased Person Dataset | 
          33859 | 
        
        
          | Disk Space Data | 
          853924 | 
        
        
          | Disputed Territories and Wars, 1816-2001 | 
          1388531 | 
        
        
          | Distance Cycled vs Calories Burned | 
          3878 | 
        
        
          | Divactory 2017 Warm Up Case | 
          42329822 | 
        
        
          | Diversity Index of US counties | 
          192899 | 
        
        
          | dj_lgb.csv | 
          17103032 | 
        
        
          | DJIA 30 Stock Time Series | 
          6479382 | 
        
        
          | djtest | 
          17097734 | 
        
        
          | dl_baseline | 
          7362746 | 
        
        
          | dlearning_help | 
          17083528 | 
        
        
          | dmia_sport | 
          99361568 | 
        
        
          | DMproject | 
          93081 | 
        
        
          | dnet 16 | 
          292448 | 
        
        
          | dnet 20 | 
          115440 | 
        
        
          | dnet 24 | 
          292448 | 
        
        
          | dnet 32 | 
          292448 | 
        
        
          | dnet 40 | 
          292448 | 
        
        
          | dnet 48 | 
          292448 | 
        
        
          | dnet 8 | 
          292448 | 
        
        
          | DNet10 | 
          39008 | 
        
        
          | Do Conference Livetweets Get More Traffic? | 
          15308 | 
        
        
          | DO NOT CONSIDER | 
          588761 | 
        
        
          | DO NOT CONSIDER | 
          591893 | 
        
        
          | Doctor and lawyer profiles on Avvo.com | 
          5869263 | 
        
        
          | Doctor Vs Non_Clinical_Correlation-HSN April'17 | 
          2654 | 
        
        
          | document | 
          42634214 | 
        
        
          | Documents dataset | 
          515387 | 
        
        
          | dododo | 
          93081 | 
        
        
          | Dog_breed_identification_dataset | 
          724499986 | 
        
        
          | dog_cat_subset | 
          47799254 | 
        
        
          | dog-project/lfw | 
          196739509 | 
        
        
          | doggoghj | 
          454914562 | 
        
        
          | dogImages | 
          1132023110 | 
        
        
          | Dogs of Zurich | 
          1568984 | 
        
        
          | Dogs of Zurick | 
          1568984 | 
        
        
          | Dogs vs Cats | 
          854397158 | 
        
        
          | DogVGG16Data | 
          152597337 | 
        
        
          | DolarToday & SIMADI Scrap | 
          2256 | 
        
        
          | Dolch Words | 
          1917 | 
        
        
          | Donald J. Trump For President, Inc | 
          87473 | 
        
        
          | Donald Trump Comments on Reddit | 
          23502571 | 
        
        
          | Donald Trump Forbes 400 Rankings | 
          3365 | 
        
        
          | Donald Trump Tweets | 
          5090580 | 
        
        
          | Dota 2 Matches | 
          1411281355 | 
        
        
          | Dota 2 Matches Dataset | 
          13465690 | 
        
        
          | Dota 2 Professional Games Hero Picks | 
          774891 | 
        
        
          | dota-ML | 
          39756882 | 
        
        
          | dotsmusic | 
          6738 | 
        
        
          | Douban Movie Short Comments Dataset | 
          405610647 | 
        
        
          | Dow Jones 1/jan/2000 to 6/dec/2017 | 
          2872115 | 
        
        
          | downloadedsolution | 
          57524622 | 
        
        
          | dp_prediction | 
          5680377 | 
        
        
          | dpnet 40 | 
          4671600 | 
        
        
          | Dreem_Data | 
          2864579944 | 
        
        
          | drinks | 
          4973 | 
        
        
          | Driver | 
          287859225 | 
        
        
          | Drone Attacks | 
          161953 | 
        
        
          | Drosophila Melanogaster Genome | 
          482805179 | 
        
        
          | Drug Induced Deaths | 
          38362 | 
        
        
          | ds_11122017 | 
          91162 | 
        
        
          | ds1aaa | 
          43781526 | 
        
        
          | DSA.XLS | 
          10620 | 
        
        
          | DSA.xlsx | 
          10620 | 
        
        
          | dsfsdfsd | 
          5993 | 
        
        
          | DSI_kickstarter | 
          4389347 | 
        
        
          | DSL Corpus Collection (DSLCC) | 
          57695248 | 
        
        
          | Du L ch H i An 1 Ngày Khám Phá m Th c V êm | 
          111513 | 
        
        
          | Dummy dataset | 
          96556 | 
        
        
          | Dummy_sales | 
          741 | 
        
        
          | Dutch Parliament Elections 2017 - Amsterdam | 
          469735 | 
        
        
          | Dutch texts | 
          1841 | 
        
        
          | Dutch Weather | 
          531979 | 
        
        
          | DVLA Driving Licence Dataset | 
          1943040 | 
        
        
          | dwqdqw | 
          28 | 
        
        
          | dzoulou | 
          3314579 | 
        
        
          | E commerce data set | 
          7548646 | 
        
        
          | E commerce data set | 
          7548646 | 
        
        
          | E-commerce | 
          1026267 | 
        
        
          | E-Commerce Data | 
          45580638 | 
        
        
          | E-sales Data | 
          82537 | 
        
        
          | Earn here | 
          12692 | 
        
        
          | Earthquakes <-?-> Solar System objects? | 
          4503737 | 
        
        
          | Easy To Analyse Ion Channel Data | 
          470271 | 
        
        
          | Easyjet Stock Prices | 
          326009 | 
        
        
          | Eating & Health Module Dataset | 
          19621665 | 
        
        
          | Ebay Motorcycle Prices | 
          1448083 | 
        
        
          | Ebola Cases, 2014 to 2016 | 
          1422467 | 
        
        
          | EC_TEMP | 
          190590 | 
        
        
          | ecac-feup | 
          35933463 | 
        
        
          | ECB Official Euro Exchange Rates | 
          478239 | 
        
        
          | ECG Analysed Data | 
          2515339 | 
        
        
          | Ecoli Data Set | 
          19487 | 
        
        
          | ecoli_data | 
          19487 | 
        
        
          | ecoli_dataset | 
          19487 | 
        
        
          | ecoli_datasets | 
          19487 | 
        
        
          | Ecommerce Dataset | 
          7548761 | 
        
        
          | eCommerce Item Data | 
          566516 | 
        
        
          | Economic calendar (EC) Forex (2011-2017) | 
          3437463 | 
        
        
          | Economic Indicators | 
          14180 | 
        
        
          | Economies | 
          1448 | 
        
        
          | Economy Rankings | 
          16741 | 
        
        
          | Ecuador Geo info | 
          598306 | 
        
        
          | Ecuadorian Presidential Candidate Tweets | 
          289982 | 
        
        
          | ecuardor_geojson | 
          1976116 | 
        
        
          | EDF_CHALLENGE | 
          9763899 | 
        
        
          | EdFacts Graduation Rates | 
          16907253 | 
        
        
          | Edges data | 
          1467 | 
        
        
          | edited_data | 
          60033 | 
        
        
          | editPAM50 | 
          18635 | 
        
        
          | edrt2345ewfgdfgdgertg | 
          1635878 | 
        
        
          | Education in India | 
          2286416 | 
        
        
          | Education Index | 
          562613 | 
        
        
          | Education Statistics | 
          310761005 | 
        
        
          | eeeeee | 
          4044919 | 
        
        
          | eeeeee | 
          1800698 | 
        
        
          | eeeeeee | 
          2 | 
        
        
          | EEG Analysis | 
          19653773 | 
        
        
          | EEG brain wave for confusion | 
          120391255 | 
        
        
          | EEG data from basic sensory task in Schizophrenia | 
          1776693160 | 
        
        
          | EEG MY DATA1 | 
          702300 | 
        
        
          | EEG-Alcohol | 
          928273586 | 
        
        
          | EffectOfGenderBodyTemperaturesAndRestingHeartRate | 
          1424 | 
        
        
          | Effects of Population on Crimes | 
          18859 | 
        
        
          | eho112 | 
          26738090 | 
        
        
          | ejercicio53 | 
          259116 | 
        
        
          | ejercicio53_ | 
          259116 | 
        
        
          | ejercicio5321 | 
          10352 | 
        
        
          | El Nino and La Nina Historical Data | 
          3976 | 
        
        
          | El Nino Dataset | 
          10068291 | 
        
        
          | Election Day Tweets | 
          219456413 | 
        
        
          | Election News Headlines | 
          77888 | 
        
        
          | Election News Headlines Cleaned | 
          69592 | 
        
        
          | Electoral Donations in Brazil | 
          72751650 | 
        
        
          | Electoral Integrity in 2016 US Election | 
          584992 | 
        
        
          | ElectricityBills | 
          138082 | 
        
        
          | Electron Microscopy 3D Segmentation | 
          519677428 | 
        
        
          | Electronic Music Features Dataset | 
          1122051 | 
        
        
          | elemental_properties | 
          2461 | 
        
        
          | Elementary Python Functions 7 | 
          58637664 | 
        
        
          | Elementary school admission Romania 2014 | 
          46574095 | 
        
        
          | Elevation Data meets SF Fire Department Calls | 
          718631987 | 
        
        
          | Elevators in New York City | 
          13586064 | 
        
        
          | ELO for EPL  | 
          1201 | 
        
        
          | ELO for EPL 15 matchday | 
          793 | 
        
        
          | ELO for EPL matchday 15 | 
          793 | 
        
        
          | Elon Musk Tweets, 2010 to 2017 | 
          402077 | 
        
        
          | Elon Musk's Tweets | 
          452905 | 
        
        
          | ema sd19 10 percent | 
          129926992 | 
        
        
          | EMA-transportation | 
          2058015 | 
        
        
          | Email Campaign Management for SME | 
          5163148 | 
        
        
          | Email Dataset | 
          3441137 | 
        
        
          | Email of Hacking Team | 
          31011560 | 
        
        
          | Email Status Tracking | 
          3141881 | 
        
        
          | Emails | 
          4659 | 
        
        
          | emap_analysis | 
          3263442 | 
        
        
          | emap_data_analysis_ | 
          3644791 | 
        
        
          | emap_db | 
          70862814 | 
        
        
          | embedding | 
          160398284 | 
        
        
          | Embeddings | 
          146390928 | 
        
        
          | embedingCatData | 
          939576596 | 
        
        
          | Emergency - 911 Calls | 
          11064369 | 
        
        
          | EMNIST (Extended MNIST) | 
          1335705026 | 
        
        
          | Emoji sentiment | 
          159906583 | 
        
        
          | EmojiNet | 
          7171480 | 
        
        
          | EmoSim508 | 
          261594 | 
        
        
          | emotion recognition | 
          301072766 | 
        
        
          | emotion_analysis | 
          101279952 | 
        
        
          | Emotion, Aging, and Sentiment Over Time | 
          41194684 | 
        
        
          | Emotions Sensor Data Set  | 
          116604 | 
        
        
          | empirical | 
          4072096 | 
        
        
          | Empirical Analysis of Network Data | 
          7780 | 
        
        
          | Employee Attrition | 
          228496 | 
        
        
          | Employee Attrition | 
          1060363 | 
        
        
          | Employee Attrition | 
          7318626 | 
        
        
          | EmployeeData | 
          58 | 
        
        
          | EmployeeSet | 
          416930 | 
        
        
          | EmployeeVancancy | 
          1011488 | 
        
        
          | Employment (All) | 
          6001 | 
        
        
          | Employment in Manufacturing | 
          1354 | 
        
        
          | EMPRES Global Animal Disease Surveillance | 
          2850933 | 
        
        
          | EmpVacancy | 
          584848 | 
        
        
          | En Part-Of-Speech tags | 
          92764294 | 
        
        
          | ENADE SCORE | 
          51212029 | 
        
        
          | Encoded shortest path sequences for NYC taxi trip | 
          141265930 | 
        
        
          | encoded_brand_name_category_name | 
          13343065 | 
        
        
          | Encrypted Stock Market Data from Numerai | 
          36569930 | 
        
        
          | Encuesta USO WEB 2.0 | 
          39106 | 
        
        
          | ENEM - ENADE | 
          8738872 | 
        
        
          | ENEM 2015 | 
          2419260871 | 
        
        
          | ENEM 2016 | 
          1226584118 | 
        
        
          | EnemAcertos | 
          40247 | 
        
        
          | Energy Consumption | 
          4529 | 
        
        
          | Energy Efficiency Dataset | 
          40713 | 
        
        
          | England Obesity Stats 2017 | 
          265639 | 
        
        
          | English Premier League in-game match data | 
          2466790 | 
        
        
          | English Premier League Penalty Dataset, 2016/17 | 
          10005 | 
        
        
          | English Premier League Player data 2017-2018 | 
          822374 | 
        
        
          | English Premier League Players Dataset, 2017/18 | 
          34635 | 
        
        
          | English Stopwords | 
          4351 | 
        
        
          | English surnames from 1849 | 
          232390 | 
        
        
          | English Word Frequency | 
          4956252 | 
        
        
          | English words all uppercase | 
          1123958 | 
        
        
          | Enriched Hotel Reviews Dataset | 
          57201126 | 
        
        
          | Enron Person of Interest Dataset | 
          53721 | 
        
        
          | Ensamble | 
          28269197 | 
        
        
          | ensemble | 
          20415050 | 
        
        
          | ensemble | 
          6356379 | 
        
        
          | Ensemble | 
          7974919 | 
        
        
          | ensemble | 
          59904 | 
        
        
          | ensemble | 
          15948812 | 
        
        
          | Ensemble Data | 
          18499009 | 
        
        
          | Ensemble Grocery 01 | 
          92955783 | 
        
        
          | ensemble_5 | 
          306790 | 
        
        
          | ensemble_ma_lgbm_cat | 
          21238240 | 
        
        
          | ensemble_results | 
          568587 | 
        
        
          | ensemble-test | 
          1505679 | 
        
        
          | Ensembler2 | 
          14175099 | 
        
        
          | Ensembling | 
          42444296 | 
        
        
          | enterenter | 
          9019406 | 
        
        
          | entre_h_1 | 
          3599989 | 
        
        
          | environment | 
          439 | 
        
        
          | Environmental Sound Classification 50 | 
          160010487 | 
        
        
          | Epicurious - Recipes with Rating and Nutrition | 
          90508284 | 
        
        
          | Epicurious Meta-Category Script | 
          20931 | 
        
        
          | Epileptic Seizure Recognition | 
          7635689 | 
        
        
          | epl_predicted_values | 
          35386 | 
        
        
          | EPL, 15 matchday | 
          1670 | 
        
        
          | Equitable Sharing Spending Dataset | 
          10627362 | 
        
        
          | Equivalence relations | 
          41177195 | 
        
        
          | ERA-Interim 2m temperature anomalies | 
          9972 | 
        
        
          | ERC Seasonal Graph Database | 
          7164928 | 
        
        
          | errors | 
          7978017 | 
        
        
          | ESA' Mars Express orbiter telemetry data | 
          174412660 | 
        
        
          | ESA's Mars Express Operations Dataset | 
          374128433 | 
        
        
          | ESL Competitive Games | 
          3113 | 
        
        
          | Est. Population US States & Puerto Rico 2010-2017  | 
          9901 | 
        
        
          | Estimated speed using fastest route | 
          111370409 | 
        
        
          | Estimates | 
          367 | 
        
        
          | et_submission.csv | 
          6297326 | 
        
        
          | Ethereum Historical Data | 
          424477 | 
        
        
          | ethnicity | 
          39691 | 
        
        
          | Ethnicity_Dataset | 
          669874 | 
        
        
          | etiquetasmodificadas | 
          27313 | 
        
        
          | eur/usd | 
          136103 | 
        
        
          | Eurfa Welsh Dictionary | 
          16049152 | 
        
        
          | euro12 | 
          2319 | 
        
        
          | Eurojackpot results | 
          35753 | 
        
        
          | Europarl | 
          41396100 | 
        
        
          | Europarl annotated for speaker gender and age | 
          398525304 | 
        
        
          | European Soccer Database | 
          6365 | 
        
        
          | European Soccer Database | 
          313090048 | 
        
        
          | European Soccer Database Supplementary | 
          61354455 | 
        
        
          | European Soccer Dataset : La Liga | 
          53417 | 
        
        
          | Eurovision Song Contest scores 1975-2017 | 
          3405728 | 
        
        
          | Eurovision YouTube Comments | 
          373333 | 
        
        
          | eurusd | 
          8887 | 
        
        
          | EURUSD - 15m - 2010-2016 | 
          15130384 | 
        
        
          | EurUsd 60 Min | 
          112159 | 
        
        
          | EURUSD from 1971 EURUSD 2017 | 
          648661 | 
        
        
          | EURUSD H4 | 
          53217642 | 
        
        
          | EVA_classified | 
          99046 | 
        
        
          | EVA_cleaned | 
          98292 | 
        
        
          | EVA_cleaned_classified | 
          197338 | 
        
        
          | EVA_general_corpus | 
          240108 | 
        
        
          | EVA_newactivity | 
          4992 | 
        
        
          | EVA_newactivity | 
          4986 | 
        
        
          | Evan's Fruit Dataset | 
          935396 | 
        
        
          | evergreen | 
          21972916 | 
        
        
          | Every Cryptocurrency Daily Market Price | 
          15118189 | 
        
        
          | Every Pub in England | 
          6287796 | 
        
        
          | Every song you have heard (almost)! | 
          630333419 | 
        
        
          | EveryPolitician | 
          44308991 | 
        
        
          | EveryPolitician | 
          44308991 | 
        
        
          | ewrwrwerwrrww | 
          272893711 | 
        
        
          | ex1_cars | 
          357 | 
        
        
          | example | 
          143914 | 
        
        
          | example converge | 
          3258 | 
        
        
          | Example Dataset | 
          218 | 
        
        
          | Example Submission File | 
          212908 | 
        
        
          | Example Web Traffic | 
          196803 | 
        
        
          | example2 | 
          0 | 
        
        
          | examplecsv | 
          443837 | 
        
        
          | ExampleData | 
          5407973 | 
        
        
          | exchange rate | 
          247 | 
        
        
          | Exchange rate | 
          9719 | 
        
        
          | Exchange rate BRIC currencies/US dollar | 
          9214 | 
        
        
          | Exchange Rates | 
          355525 | 
        
        
          | Exchange Rates | 
          2081675 | 
        
        
          | Executed Inmates 1982 - 2017 | 
          652451 | 
        
        
          | Executions in the United States, 1976-2016 | 
          157451 | 
        
        
          | Executive Orders | 
          198521 | 
        
        
          | Executive Orders, 1789-2016 | 
          4229 | 
        
        
          | Exercice | 
          93 | 
        
        
          | Exercise Pattern Prediction | 
          12237502 | 
        
        
          | exercise1 | 
          1359 | 
        
        
          | EXL_Data | 
          8025781 | 
        
        
          | Exoplanet Hunting in Deep Space | 
          291130416 | 
        
        
          | exoTest | 
          5896401 | 
        
        
          | ExoTrain.csv | 
          30534811 | 
        
        
          | exp_titan | 
          89823 | 
        
        
          | Expat Insider 2017 | 
          3636 | 
        
        
          | ExpediaTrainingSet | 
          612082209 | 
        
        
          | Expenses | 
          35 | 
        
        
          | experiment_data | 
          1122 | 
        
        
          | exploring soccer analysis | 
          2202337 | 
        
        
          | ExpressionNet | 
          370274 | 
        
        
          | Extemal | 
          547620 | 
        
        
          | Extinct Languages | 
          754406 | 
        
        
          | Extracted | 
          642546 | 
        
        
          | Extracted Dataset | 
          23898986 | 
        
        
          | Extremely_Randomized_Trees_Classification | 
          28495130 | 
        
        
          | Exxon Mobile | 
          4857 | 
        
        
          | Exxon Mobile stock data | 
          4857 | 
        
        
          | Eye Gaze | 
          700460726 | 
        
        
          | EyesOpenClosed | 
          37677210 | 
        
        
          | F-train | 
          7726881 | 
        
        
          | F-train2 | 
          7726881 | 
        
        
          | F1_ddbb | 
          6242967 | 
        
        
          | FAA Laser Incident Reports | 
          1180822 | 
        
        
          | FAA laser with days of week | 
          1549619 | 
        
        
          | fabletext | 
          490763 | 
        
        
          | face detection | 
          24229590 | 
        
        
          | Face Images with Marked Landmark Points | 
          521234420 | 
        
        
          | face_key_point | 
          238064810 | 
        
        
          | Facebook keyword extraction competition | 
          3249061408 | 
        
        
          | Facebook V Results: Predicting Check Ins | 
          2789281797 | 
        
        
          | Facebook_dataset | 
          1919867 | 
        
        
          | FaceBook-Dummy | 
          6096575 | 
        
        
          | faces_dataset | 
          36088044 | 
        
        
          | facesdata | 
          36088044 | 
        
        
          | Facial Expression of Emotion | 
          5423670 | 
        
        
          | Facial keypoint | 
          238064810 | 
        
        
          | Facial Keypoint Detection | 
          297886951 | 
        
        
          | Facial keypoints | 
          820599132 | 
        
        
          | Facial Keypoints dataset | 
          297886951 | 
        
        
          | Facial Keypoints Detection | 
          80858260 | 
        
        
          | Facial_Key_Points | 
          0 | 
        
        
          | faciallandmark | 
          257159 | 
        
        
          | FacialRecognition | 
          122495646 | 
        
        
          | FacialSemanticAnalysis.csv | 
          301072766 | 
        
        
          | Fact-Checking Facebook Politics Pages | 
          364786 | 
        
        
          | Factorial Digit Frequencies | 
          369214 | 
        
        
          | factors affecting mobile banking adoption | 
          54629 | 
        
        
          | FADPL2015 | 
          29435 | 
        
        
          | Fair's "Affairs" dataset | 
          23148 | 
        
        
          | Fake News detection | 
          5123604 | 
        
        
          | Fake_Dataset | 
          1563278 | 
        
        
          | Fall Detection Data from China | 
          625610 | 
        
        
          | Fantasy Premier League | 
          408602 | 
        
        
          | Fantasy Premier League | 
          717954130 | 
        
        
          | Fantasy Premier League - 2017/18 | 
          398450 | 
        
        
          | Fantasy Trading | 
          115900961 | 
        
        
          | Farmers Markets in New York City | 
          11013 | 
        
        
          | FAS data set 2016 | 
          14816 | 
        
        
          | Fashion | 
          30888348 | 
        
        
          | Fashion Mnist | 
          5860382 | 
        
        
          | Fashion MNIST | 
          72149861 | 
        
        
          | fashion_mnist dataset | 
          133047193 | 
        
        
          | Fashion-mnist_train | 
          35194014 | 
        
        
          | Fashionmnist | 
          5860382 | 
        
        
          | Fashon_MNIST train and test data  | 
          41051803 | 
        
        
          | FAspell | 
          149934 | 
        
        
          | fasttext | 
          111680401 | 
        
        
          | FastText | 
          111680399 | 
        
        
          | fasttext | 
          861404431 | 
        
        
          | fastText | 
          95607 | 
        
        
          | fasttext embeddings | 
          141365456 | 
        
        
          | fastText English Word Vectors | 
          689870086 | 
        
        
          | fastText English Word Vectors Including Sub-words | 
          1035700419 | 
        
        
          | fastText Pre-trained word vectors English | 
          7883839860 | 
        
        
          | fastvideo category to words | 
          1108713 | 
        
        
          | fastvideo data category to title words | 
          1108739 | 
        
        
          | fat_chickens | 
          1145 | 
        
        
          | Fatal Police Shootings in the US | 
          3371757 | 
        
        
          | Fatal Police Shootings, 2015-Present | 
          196862 | 
        
        
          | Fatalities in Road Accident india(2001-2012) | 
          842752 | 
        
        
          | Fatality Facts & Safety While Driving | 
          267391414 | 
        
        
          | Fatchicken | 
          717 | 
        
        
          | fatchickens | 
          719 | 
        
        
          | Fatigue striations marked on SEM photos | 
          5775575500 | 
        
        
          | Fault Prediction | 
          1453672 | 
        
        
          | Fault prop | 
          2980383 | 
        
        
          | Faulty Steel Plates | 
          298004 | 
        
        
          | Favicons | 
          877700988 | 
        
        
          | favorita | 
          474221153 | 
        
        
          | favorita 1 | 
          72938089 | 
        
        
          | favorita 10 | 
          88984621 | 
        
        
          | favorita 11 | 
          143591683 | 
        
        
          | favorita 12 | 
          69047441 | 
        
        
          | favorita 13 | 
          75286158 | 
        
        
          | favorita 14 | 
          86454093 | 
        
        
          | favorita 15 | 
          146712778 | 
        
        
          | favorita 18 | 
          89651736 | 
        
        
          | favorita 19 | 
          68840616 | 
        
        
          | favorita 2 | 
          34180674 | 
        
        
          | favorita 20 | 
          72899862 | 
        
        
          | Favorita 21 | 
          90178885 | 
        
        
          | favorita 22 | 
          85572260 | 
        
        
          | favorita 23 | 
          87184697 | 
        
        
          | favorita 24 | 
          88090025 | 
        
        
          | Favorita 3 | 
          52696046 | 
        
        
          | favorita 4 | 
          34203687 | 
        
        
          | favorita 5 | 
          67435394 | 
        
        
          | favorita 6 | 
          37522139 | 
        
        
          | favorita 8 | 
          92233581 | 
        
        
          | favorita 9 | 
          69193838 | 
        
        
          | Favorita light | 
          14552213 | 
        
        
          | favorita mix | 
          49767923 | 
        
        
          | Favorita Un-7z | 
          168307438 | 
        
        
          | Favorita Un-7z 1 | 
          200778612 | 
        
        
          | Favorita_ddvz | 
          7700245 | 
        
        
          | favorita1 | 
          514556 | 
        
        
          | fbddfbfdb | 
          58459 | 
        
        
          | FCC Net Neutrality Comments | 
          8466965 | 
        
        
          | FCC Net Neutrality Comments (4/2017 - 10/2017) | 
          207678865 | 
        
        
          | FCC Net Neutrality Comments Clustered | 
          203169719 | 
        
        
          | FCC Net Neutrality Comments Vectorized Sample | 
          299712531 | 
        
        
          | FCC Public Comment Survey Results Deidentified | 
          16610487 | 
        
        
          | fd2222 | 
          815482 | 
        
        
          | FDA Enforcement Actions | 
          1095223092 | 
        
        
          | FDetect | 
          33774512 | 
        
        
          | fdhdbbdb | 
          38 | 
        
        
          | feat files | 
          804161924 | 
        
        
          | feature | 
          355 | 
        
        
          | feature | 
          202926583 | 
        
        
          | Feature Subset Selection | 
          242652 | 
        
        
          | feature_2 | 
          1316 | 
        
        
          | feature_798 | 
          496180 | 
        
        
          | feature_mensile | 
          6949 | 
        
        
          | feature1 | 
          286 | 
        
        
          | feature1200 | 
          17886 | 
        
        
          | feature1600 | 
          23261 | 
        
        
          | feature200 | 
          2975 | 
        
        
          | feature400 | 
          5933 | 
        
        
          | feature800 | 
          11722 | 
        
        
          | Featured | 
          597345624 | 
        
        
          | FeatureIndex | 
          27589 | 
        
        
          | Features | 
          1164474 | 
        
        
          | features_.csv | 
          1316 | 
        
        
          | features.csv | 
          1316 | 
        
        
          | features.csv | 
          1571 | 
        
        
          | Features&Targets | 
          7365741 | 
        
        
          | fecalma | 
          9354 | 
        
        
          | Feder Decalogue of Priorities | 
          12086 | 
        
        
          | Federal Air Marshal Misconduct | 
          373826 | 
        
        
          | Federal Emergencies and Disasters, 1953-Present | 
          5875126 | 
        
        
          | Federal Firearm Licences | 
          12038707 | 
        
        
          | Federal Holidays USA 1966-2020 | 
          15186 | 
        
        
          | Federal Reserve Interest Rates, 1954-Present | 
          26464 | 
        
        
          | feet files | 
          724350246 | 
        
        
          | FEM simulations | 
          624780 | 
        
        
          | FendaData | 
          38874706 | 
        
        
          | Fentanyl Pharmacy Dispensations in NJ 2011-2016 | 
          3057 | 
        
        
          | Fertility Rate By Race | 
          16613 | 
        
        
          | fffff. vghnb n2e | 
          366 | 
        
        
          | ffffff | 
          148359627 | 
        
        
          | fhv lee 15k10 | 
          4738784 | 
        
        
          | fhv lee 15k15 | 
          4732266 | 
        
        
          | fhv lee 15k20 | 
          4733529 | 
        
        
          | fhv lee 15k5 | 
          4681687 | 
        
        
          | FICS Chess Games | 
          1552017 | 
        
        
          | fifa 17 dataset | 
          2018895 | 
        
        
          | fifa 17 datasets | 
          8128096 | 
        
        
          | fifa 17 datasetss | 
          1904157 | 
        
        
          | FIFA 18 calculated ratings | 
          1133364 | 
        
        
          | FIFA 18 Complete Player Dataset | 
          15928513 | 
        
        
          | Fifa 18 More Complete Player Dataset | 
          5653816 | 
        
        
          | FIFA worldcup 2018 Dataset | 
          2794 | 
        
        
          | fifa2017 | 
          4773096 | 
        
        
          | fifa2017 full data | 
          3930217 | 
        
        
          | file_for_smart2 | 
          2034976 | 
        
        
          | file45646 | 
          273539030 | 
        
        
          | filestc | 
          51818 | 
        
        
          | Filipino Family Income and Expenditure | 
          22664315 | 
        
        
          | fill_brand_name | 
          7976847 | 
        
        
          | Film Fest | 
          4388554 | 
        
        
          | Film Locations in San Francisco | 
          320475 | 
        
        
          | fim.so | 
          792496 | 
        
        
          | Fin Model 2Sigma | 
          580023307 | 
        
        
          | final project | 
          15419602 | 
        
        
          | Final Project | 
          277285 | 
        
        
          | Final Project Dataset | 
          22204041 | 
        
        
          | Final project: predict future sales | 
          15419602 | 
        
        
          | final_best14 | 
          184162 | 
        
        
          | final_project | 
          1397246 | 
        
        
          | final_project_dataset | 
          37883 | 
        
        
          | Final_Prop | 
          36567820 | 
        
        
          | final_test | 
          57039479 | 
        
        
          | final_train  | 
          120047052 | 
        
        
          | final2 | 
          7971308 | 
        
        
          | finalData | 
          170760 | 
        
        
          | FinalData | 
          10307653 | 
        
        
          | FinalDatasets | 
          8646651 | 
        
        
          | finaledata | 
          170760 | 
        
        
          | finalmodel | 
          4686417 | 
        
        
          | finalproject | 
          16874333 | 
        
        
          | finance study | 
          3170972 | 
        
        
          | Finance - India | 
          49579 | 
        
        
          | Finance_kaggle_sample | 
          1600059 | 
        
        
          | Financial Distress Prediction | 
          834637 | 
        
        
          | Financial Statement Extracts | 
          3747170542 | 
        
        
          | finData | 
          164688 | 
        
        
          | Finding and Measuring Lungs in CT Data | 
          662532978 | 
        
        
          | Finding Bubbles in Foam | 
          39156812 | 
        
        
          | Fine-grained Context-sensitive Lexical Inference | 
          2817570 | 
        
        
          | Finishers Boston Marathon 2015, 2016 & 2017 | 
          12668752 | 
        
        
          | Finishers Boston Marathon 2017 | 
          4196246 | 
        
        
          | Fire Emblem Heroes Survey | 
          1005864 | 
        
        
          | Fire-detection-model-Keras  | 
          15267435 | 
        
        
          | Fire-detection-model-Keras for video | 
          15267435 | 
        
        
          | Firearm licenses | 
          3596986 | 
        
        
          | Firearms Provisions in US States | 
          443005 | 
        
        
          | Fireballs | 
          52005 | 
        
        
          | Firefighter Fatalities in the United States | 
          278358 | 
        
        
          | Firefox: How Connected Are You Survey | 
          105295883 | 
        
        
          | Fires vs. Thefts | 
          1704 | 
        
        
          | Firm_data | 
          3396185 | 
        
        
          | First Attempt | 
          38061 | 
        
        
          | First Features Spooky | 
          2051459 | 
        
        
          | First GOP Debate Twitter Sentiment | 
          8525068 | 
        
        
          | First Person Narratives of the American South | 
          45361713 | 
        
        
          | First Quora Dataset Release: Question Pairs | 
          61325254 | 
        
        
          | first submission | 
          7976172 | 
        
        
          | first try | 
          369638 | 
        
        
          | First Voyage of Christopher Columbus | 
          327061 | 
        
        
          | first_london | 
          800554 | 
        
        
          | First_Matching_Without_Limitation | 
          4550860 | 
        
        
          | first_submission | 
          7307405 | 
        
        
          | first_submit | 
          7257447 | 
        
        
          | first_submit_santa | 
          4053360 | 
        
        
          | first.csv | 
          7936696 | 
        
        
          | first7.csv | 
          6823410 | 
        
        
          | FirstGB | 
          8012408 | 
        
        
          | firstpred | 
          7327752 | 
        
        
          | FirstSubDetek | 
          3736741 | 
        
        
          | firsttrain | 
          10384 | 
        
        
          | FirstTry | 
          7267946 | 
        
        
          | Fish list | 
          548 | 
        
        
          | Fish Relatedness | 
          349085 | 
        
        
          | Fishtown Comps | 
          2902 | 
        
        
          | Fitness Trends Dataset | 
          4400 | 
        
        
          | FiveThirtyEight | 
          14347029 | 
        
        
          | Flaredown Checkin Data | 
          155387168 | 
        
        
          | Flight Route Database | 
          2377278 | 
        
        
          | flights | 
          213824264 | 
        
        
          | Flights in Brazil | 
          42517112 | 
        
        
          | Flipkart Products | 
          38114963 | 
        
        
          | Floresta | 
          16414136 | 
        
        
          | Flower Color Images | 
          51350460 | 
        
        
          | flowers | 
          571238 | 
        
        
          | flowers recognition | 
          235781000 | 
        
        
          | fold_1 | 
          960168 | 
        
        
          | folder23 | 
          5739444 | 
        
        
          | folderText | 
          185 | 
        
        
          | Foo data | 
          67 | 
        
        
          | Food 101 | 
          5041406373 | 
        
        
          | Food choices | 
          5564659 | 
        
        
          | Food Data | 
          1632444 | 
        
        
          | Food Images (Food-101) | 
          694960931 | 
        
        
          | Food Ingredient Lists | 
          5347183 | 
        
        
          | Food preference | 
          5564659 | 
        
        
          | Food Prices for January 2016-June 2017 (Nigeria) | 
          4211 | 
        
        
          | Food searches on Google since 2004 | 
          4206909 | 
        
        
          | Foodborne Disease Outbreaks, 1998-2015 | 
          1538069 | 
        
        
          | FoodClassification | 
          58057 | 
        
        
          | foodmart.sales | 
          268322 | 
        
        
          | FoodTruck | 
          1359 | 
        
        
          | foood1 | 
          119468 | 
        
        
          | fooooo | 
          14 | 
        
        
          | Football Delphi | 
          6279168 | 
        
        
          | Football Events | 
          182915890 | 
        
        
          | Football features | 
          151782 | 
        
        
          | Football Manager Data (150,000+ players) | 
          38327717 | 
        
        
          | Football Matches of Spanish League | 
          384504 | 
        
        
          | Football Players | 
          19965974 | 
        
        
          | Football score prediction | 
          208891 | 
        
        
          | Football striker performance | 
          216145 | 
        
        
          | football_ddbb | 
          22142654 | 
        
        
          | FootballData | 
          60026 | 
        
        
          | for coefficients | 
          2296928 | 
        
        
          | for glmnet | 
          1131987 | 
        
        
          | for testing | 
          700108 | 
        
        
          | for text2vec glmnet | 
          3040362 | 
        
        
          | Forbes Top 2000 Companies | 
          514058 | 
        
        
          | Forecasting Currency conversion rate USDAUD | 
          32096 | 
        
        
          | Forecasts for Product Demand | 
          51253380 | 
        
        
          | Foreign Affairs(VISA)Immigration India 2010-2014 | 
          5776610 | 
        
        
          | Foreign Direct Investment in India | 
          7992 | 
        
        
          | Foreign Exchange (FX) Prediction - USD/JPY | 
          1546803 | 
        
        
          | forest | 
          19020 | 
        
        
          | forest cover data | 
          21701 | 
        
        
          | Forest Cover Type Dataset | 
          75170064 | 
        
        
          | Forest Fires Data Set | 
          25478 | 
        
        
          | FOREX: EURUSD dataset | 
          3148567 | 
        
        
          | fork model v2 aug 24 | 
          19562657 | 
        
        
          | Formspring data for Cyberbullying Detection | 
          3966755 | 
        
        
          | Formula 1 points data. 2000-2016 | 
          25018 | 
        
        
          | Formula 1 points data. 2000-2016 | 
          26258 | 
        
        
          | Formula 1 Race Data | 
          6242967 | 
        
        
          | Fortnite: Battle Royale - Weapon Attributes | 
          2950 | 
        
        
          | Fortnite: Battle Royale Chest Location Coordinates | 
          4205 | 
        
        
          | Fortune 500 Companies of 2017 in US [Latest] | 
          40868 | 
        
        
          | Fortune 500 Diversity | 
          471313 | 
        
        
          | Forza and Pascal | 
          24682257 | 
        
        
          | Fotojäädvustus | 
          7121 | 
        
        
          | Four Shapes | 
          22554944 | 
        
        
          | FourSquare - NYC and Tokyo Check-ins | 
          102320461 | 
        
        
          | FourSquare - NYC Restaurant Check-Ins | 
          1472659 | 
        
        
          | Foursquare Tips | 
          19124220 | 
        
        
          | Fracking Well Chemical Disclosure Datasets | 
          573227327 | 
        
        
          | Framenet | 
          168547806 | 
        
        
          | Framing | 
          391381 | 
        
        
          | Framingham Heart study dataset | 
          191803 | 
        
        
          | Fraud Atm Pin Data | 
          636 | 
        
        
          | Fraud Detection Societe Generale | 
          33774512 | 
        
        
          | Fraud Transaction | 
          34301254 | 
        
        
          | fraud_analysis | 
          150828752 | 
        
        
          | fraud_test | 
          68342 | 
        
        
          | fraud_train | 
          684819 | 
        
        
          | fraud_trans_test | 
          20181347 | 
        
        
          | fraud_trans_testdata | 
          20181347 | 
        
        
          | fraud_transaction | 
          13593165 | 
        
        
          | fraud-ps2 | 
          33774512 | 
        
        
          | Fraudulent E-mail Corpus | 
          17344435 | 
        
        
          | frauldenttransactions | 
          39652204 | 
        
        
          | free public fictions | 
          207539 | 
        
        
          | freeCodeCamp Chatroom in Gitter 2015-2017 | 
          393256406 | 
        
        
          | freeCodeCamp Students Data Jan-Dec 2015 | 
          361462031 | 
        
        
          | Freedom of Information Act Requests | 
          103028 | 
        
        
          | Freedom of the Press, 2001-2015 | 
          44572 | 
        
        
          | Freesound: Content-Based Audio Retrieval | 
          5644751852 | 
        
        
          | Freight Analysis Framework | 
          653415200 | 
        
        
          | French elections : Most searched candidate by city | 
          778477 | 
        
        
          | French employment, salaries, population per town | 
          360679360 | 
        
        
          | French firms evolution 2017 in paris neighborhood  | 
          7337239 | 
        
        
          | French presidential election | 
          3122117632 | 
        
        
          | French Presidential Election, 2017 | 
          239070461 | 
        
        
          | French Reddit Discussion | 
          221396143 | 
        
        
          | Frightgeist 2017: Costumes by State | 
          2992 | 
        
        
          | Frightgeist 2017: Rankings for costumes | 
          9267 | 
        
        
          | From CoinMarketCap Historic | 
          259498 | 
        
        
          | From CoinMarketCap JSON API | 
          133771 | 
        
        
          | from web by hand | 
          39225 | 
        
        
          | from_name | 
          1420 | 
        
        
          | Front Door Motion & Brightness | 
          1025428 | 
        
        
          | fruits | 
          267 | 
        
        
          | Fruits 360 dataset | 
          148099066 | 
        
        
          | Fruits with colors dataset | 
          2368 | 
        
        
          | FruitsLabel | 
          267 | 
        
        
          | ft-from-ptr-ivrsn | 
          144092 | 
        
        
          | FTRL from anttip | 
          2243245 | 
        
        
          | FTRL_LBGM_submission | 
          7977793 | 
        
        
          | Fu Clan family dataset | 
          21633543 | 
        
        
          | Fuel comparison | 
          3722 | 
        
        
          | full data italia | 
          328975 | 
        
        
          | Full Details of Resigned Employees from Jan-17 | 
          83586 | 
        
        
          | Full Details of Resigned Employees from Jan-2016 | 
          90765 | 
        
        
          | Full Details of Resigned Employees from Jan'16 | 
          175934 | 
        
        
          | Full promotion multipliers | 
          53709 | 
        
        
          | full_1 | 
          57318636 | 
        
        
          | full-data-italia | 
          164498 | 
        
        
          | full-data-italia2 | 
          164498 | 
        
        
          | full-dataitalia3 | 
          164501 | 
        
        
          | full-italia4 | 
          164499 | 
        
        
          | full-italia5 | 
          165072 | 
        
        
          | Full2000000 | 
          613861277 | 
        
        
          | Funding Successful Projects | 
          59853207 | 
        
        
          | Funding Successful Projects on Kickstarter | 
          59853207 | 
        
        
          | fundsflow | 
          2361 | 
        
        
          | Furniture_sales_sheet | 
          189288 | 
        
        
          | future group hackathon | 
          2765753 | 
        
        
          | Future Hackerearth Cluster | 
          23201640 | 
        
        
          | future_data | 
          44995815 | 
        
        
          | futuregroup | 
          123552748 | 
        
        
          | fuzzy.py | 
          1907 | 
        
        
          | FX USD/JPY Prediction | 
          1609805 | 
        
        
          | fx_data_daily | 
          833405 | 
        
        
          | GA_kickstarter | 
          4389347 | 
        
        
          | galactic_fk | 
          20802 | 
        
        
          | Game of Thrones | 
          262969 | 
        
        
          | GameOfThrones | 
          8651 | 
        
        
          | games_data | 
          2360725 | 
        
        
          | GamesProject | 
          487509 | 
        
        
          | Gamo of Thrones | 
          8651 | 
        
        
          | GanttChart-updated | 
          213 | 
        
        
          | Gapminder | 
          81932 | 
        
        
          | Gas sensor array under dynamic gas mixtures | 
          1650257648 | 
        
        
          | Gasoline Retail Price in New York City | 
          19834 | 
        
        
          | Gazetteers | 
          12711 | 
        
        
          | GBM 2091 | 
          151646 | 
        
        
          | gbm data | 
          18623278 | 
        
        
          | gbm-data.csv | 
          2838162 | 
        
        
          | GBPUSD tick test data | 
          52164748 | 
        
        
          | gcfore | 
          19041 | 
        
        
          | GCool data | 
          18388 | 
        
        
          | GDP by country | 
          354233 | 
        
        
          | GDP Data | 
          662372 | 
        
        
          | GDP World | 
          520192 | 
        
        
          | Gender Development Index UNDP 2014 | 
          14480 | 
        
        
          | Gender discrimination | 
          9005 | 
        
        
          | Gender Info 2007 | 
          1644846 | 
        
        
          | gender pay gap | 
          142083 | 
        
        
          | Gender Recognition by Voice | 
          1065381 | 
        
        
          | Gender Voice Prediction--Decision tree modeling | 
          746155 | 
        
        
          | gender_submission | 
          93081 | 
        
        
          |  gender_submission.csv | 
          93081 | 
        
        
          | gender_submission.csv | 
          93081 | 
        
        
          | Gene expression dataset (Golub et al.) | 
          3900544 | 
        
        
          | General assem | 
          4388554 | 
        
        
          | General Election Results | 
          68621563 | 
        
        
          | General Practice Prescribing Data | 
          4348144805 | 
        
        
          | Generated data  | 
          41909117 | 
        
        
          | Generating chromosome overlapps | 
          6300216 | 
        
        
          | Genesis | 
          1426122 | 
        
        
          | genesissports buyers behaviour | 
          201208 | 
        
        
          | Geographically Annotated Civil War Corpus | 
          49890306 | 
        
        
          | Geojson of Countries | 
          257130 | 
        
        
          | GeoNames database | 
          1475035166 | 
        
        
          | Georgia Public Schools Salaries and Benefits | 
          48399987 | 
        
        
          | Gerber data | 
          6537670 | 
        
        
          | German Credit Risk | 
          49689 | 
        
        
          | German Federal Elections 2017 | 
          10353461 | 
        
        
          | German Sentiment Analysis Toolkit | 
          441594 | 
        
        
          | german_credit_data_with_risk | 
          53393 | 
        
        
          | Getaway Data | 
          3531834 | 
        
        
          | Getting Real about Fake News | 
          56680002 | 
        
        
          | gherboxdata | 
          196107 | 
        
        
          | GIC1111 | 
          976931 | 
        
        
          | GitHub Repos | 
          3371476422231 | 
        
        
          | Github stared repos with photos | 
          233234 | 
        
        
          | Give Me Some Credit :: 2011 Competition Data | 
          14470368 | 
        
        
          | Glass Classification | 
          10053 | 
        
        
          | Global Administrative Areas of Spain | 
          40209755 | 
        
        
          | Global Annual Trade Data 08-14 | 
          228192024 | 
        
        
          | Global ball association bet records | 
          14358 | 
        
        
          | Global Commodity Trade Statistics | 
          126489717 | 
        
        
          | Global Food & Agriculture Statistics | 
          474977831 | 
        
        
          | Global Food Prices | 
          87263717 | 
        
        
          | Global Historical Climatology Network | 
          20540771 | 
        
        
          | Global Peace Index 2016 | 
          9725 | 
        
        
          | Global Population Estimates | 
          44330656 | 
        
        
          | Global Shark Attacks | 
          555620 | 
        
        
          | Global Social Survey Programs: 1948-2014 | 
          3375658 | 
        
        
          | Global suicide data | 
          296197 | 
        
        
          | Global Temperature Index | 
          3697 | 
        
        
          | Global Terrorism  | 
          27831071 | 
        
        
          | Global Terrorism Database | 
          150950913 | 
        
        
          | Global Terrorism DB | 
          150946473 | 
        
        
          | Global_terrorism | 
          27831071 | 
        
        
          | GlobalLandTemperaturesByCountry | 
          22680393 | 
        
        
          | globalterrorism | 
          69817919 | 
        
        
          | GloVe (840B tokens, 300d vectors) | 
          2232946614 | 
        
        
          | glove 100d vecs | 
          78798954 | 
        
        
          | Glove 6G 50 | 
          70948758 | 
        
        
          | glove embedding 50 | 
          70948758 | 
        
        
          | glove twitter vecs tk | 
          326533149 | 
        
        
          | Glove Vectors | 
          137847611 | 
        
        
          | Glove Word Vectors Common Crawl 42B 300d | 
          1928408059 | 
        
        
          | glove_300 | 
          404848082 | 
        
        
          | glove_50 | 
          70948758 | 
        
        
          | GloVe_840b | 
          2232946614 | 
        
        
          | glove_840B_300d | 
          2232946614 | 
        
        
          | glove_840b_300d | 
          2232946614 | 
        
        
          | glove_embedding_weights | 
          137847611 | 
        
        
          | GloVe: Global Vectors for Word Representation | 
          257699930 | 
        
        
          | GloVe: Global Vectors for Word Representation | 
          1211899640 | 
        
        
          | glove.6B.100d.txt | 
          137847611 | 
        
        
          | glove.6B.300d.txt | 
          404848082 | 
        
        
          | glove.6B.50d | 
          70948758 | 
        
        
          | glove.6B.50d.txt | 
          70948758 | 
        
        
          | glove.6B.50d.txt | 
          70948758 | 
        
        
          | glove.840B.300d.txt | 
          2232946667 | 
        
        
          | glove.twitter.100d (Open data commons) | 
          416288692 | 
        
        
          | glove.twitter.27B.50d.txt | 
          214231913 | 
        
        
          | glove.twitter.27B.50d.txt | 
          214231913 | 
        
        
          | GloVe(840B) | 
          2232946614 | 
        
        
          | glove100 | 
          2553401 | 
        
        
          | glove100 | 
          137847611 | 
        
        
          | glove100 | 
          137847611 | 
        
        
          | glove100_1 | 
          2553401 | 
        
        
          | glove100-2 | 
          2553401 | 
        
        
          | glove200d | 
          271376124 | 
        
        
          | glove50d | 
          70948758 | 
        
        
          | glove6b50d | 
          70948758 | 
        
        
          | GloVeWordEmbeddings | 
          137847611 | 
        
        
          | GMR Stock Price | 
          154029 | 
        
        
          | golangImage | 
          8065 | 
        
        
          | Gold Glove Winners | 
          45237 | 
        
        
          | Gold price Quandl | 
          578517 | 
        
        
          | Gone With The Wind | 
          2584591 | 
        
        
          | gone_with_the_wind_images | 
          97685 | 
        
        
          | Good Morning Tweets | 
          3289265 | 
        
        
          | goodbooks-10k | 
          42558606 | 
        
        
          | goodi44 | 
          19111 | 
        
        
          | GoodReads Book reviews  | 
          319293398 | 
        
        
          | goods_price | 
          1846250 | 
        
        
          | goods-price | 
          1846250 | 
        
        
          | goods-price-0618 | 
          1846250 | 
        
        
          | goog price | 
          7961 | 
        
        
          | GOOG Ticker stock data | 
          11769 | 
        
        
          | Google Distance Matrix Sample | 
          525170 | 
        
        
          | Google Job Skills | 
          416543 | 
        
        
          | Google news articles tagged under hate crimes | 
          8568971 | 
        
        
          | Google Product Taxonomy | 
          24749399 | 
        
        
          | Google Project Sunroof | 
          45984581 | 
        
        
          | Google search interest in Hurricane Irma by day | 
          153207 | 
        
        
          | google stock | 
          58548 | 
        
        
          | Google Stock Price | 
          186681 | 
        
        
          | Google Text Normalization Challenge | 
          9768987514 | 
        
        
          | Google trend with Foton in Thailand | 
          3625 | 
        
        
          | Google Web Graph | 
          21168784 | 
        
        
          | google_news | 
          1760925994 | 
        
        
          | Google_news_w2v | 
          1760925946 | 
        
        
          | Google_pretrain_model | 
          1647548659 | 
        
        
          | Google_PRICE | 
          11500 | 
        
        
          | GoogleNews-vectors-negative300 | 
          1647548659 | 
        
        
          | GoogleNews-vectors-negative300 | 
          1760925994 | 
        
        
          | googleword2vec | 
          1760925994 | 
        
        
          | Govt. of India Census, 2001 District-Wise | 
          363776 | 
        
        
          | Gowalla Checkins | 
          105113306 | 
        
        
          | GPS track | 
          952643 | 
        
        
          | GPS Watch Data | 
          90198288 | 
        
        
          | Graduate school admission data | 
          5489 | 
        
        
          | graf.txt | 
          1157 | 
        
        
          | Grafena Dataset | 
          43675 | 
        
        
          | Graffiti Signatures of Madrid | 
          10820160 | 
        
        
          | Grammars | 
          4208159 | 
        
        
          | GRANDAD blood pressure dataset | 
          301 | 
        
        
          | GrapeJuice Price | 
          910 | 
        
        
          | Graph Images | 
          241608 | 
        
        
          | Grasping Dataset | 
          508060551 | 
        
        
          | Great Britain Road Accidents 2005_2016 | 
          653574412 | 
        
        
          | greedy_baseline | 
          4044941 | 
        
        
          | Greek Super League Results  | 
          26781 | 
        
        
          | Green House Emissions by Energy Industries | 
          11429 | 
        
        
          | GREEND: GREEND ENergy Dataset | 
          6093014 | 
        
        
          | GridWorldImage | 
          11487 | 
        
        
          | grocery | 
          82969759 | 
        
        
          | Grocery | 
          168307362 | 
        
        
          | Grocery Files | 
          890967376 | 
        
        
          | Grocery Sales Forecasting | 
          506433327 | 
        
        
          | Grocery Store Data Set | 
          478 | 
        
        
          | Grocery2017 | 
          5408194 | 
        
        
          | grolier | 
          17460923 | 
        
        
          | Ground Parrot Vocalisation Dataset | 
          1602944 | 
        
        
          | Ground State Energies of 16,242 Molecules | 
          170267454 | 
        
        
          | Ground truth labels - Amzn movie reviews dataset | 
          37531190 | 
        
        
          | Groundhog Day Forecasts and Temperatures | 
          7549 | 
        
        
          | Groundhogs Day Weather Predictions | 
          7460 | 
        
        
          | GRU Glove Toxic | 
          14442880 | 
        
        
          | gru_result | 
          7256749 | 
        
        
          | GRUgru | 
          40047775 | 
        
        
          | grugrugru | 
          40047775 | 
        
        
          | gruresult | 
          7256749 | 
        
        
          | Gry baza danych | 
          119495 | 
        
        
          | GSMArena Mobile Devices | 
          359535 | 
        
        
          | GSMArena Phone Dataset | 
          5341857 | 
        
        
          | GTD for India | 
          2066910 | 
        
        
          | GTD-India | 
          2066910 | 
        
        
          | GTZAN music/speech collection | 
          169349632 | 
        
        
          | Guids for randomness check | 
          59998 | 
        
        
          | Gun Deaths in the US: 2012-2014 | 
          6301312 | 
        
        
          | gun stencil | 
          10465 | 
        
        
          | Gun violence database | 
          430167 | 
        
        
          | gurobi | 
          2758 | 
        
        
          | Gutenberg | 
          11802669 | 
        
        
          | Gym Market Exploratory survey, Nairobi | 
          223409 | 
        
        
          | Gym Twitter Account Meta Data | 
          4401936 | 
        
        
          | Gymnastics World Championships 2017 | 
          6861 | 
        
        
          | gzt kaggle2 | 
          6446535 | 
        
        
          | gzt Mercari | 
          6446535 | 
        
        
          | gzt_Mercari2 | 
          6452499 | 
        
        
          | H-1B Visa Petitions 2011-2016 | 
          492258374 | 
        
        
          | H1-B Analysis | 
          110746107 | 
        
        
          | H1B Dataset for Challenge | 
          74863405 | 
        
        
          | H1B Disclosure Dataset  | 
          43891581 | 
        
        
          | h1b vis predi | 
          49891879 | 
        
        
          | H1B Visa data | 
          48582602 | 
        
        
          | H1b_analysis_parallel | 
          48582602 | 
        
        
          | H1B_Test | 
          24748449 | 
        
        
          | h1b_Train | 
          99611854 | 
        
        
          | h2o-titanic image | 
          170842 | 
        
        
          | h2p_support | 
          413855 | 
        
        
          | haarcascades | 
          676709 | 
        
        
          | haberman | 
          3409 | 
        
        
          | haberman dataset | 
          3140 | 
        
        
          | haberman.csv | 
          3103 | 
        
        
          | Haberman's data updated | 
          5162 | 
        
        
          | Haberman's Survival Data Set | 
          3103 | 
        
        
          | habermans | 
          3409 | 
        
        
          | hackathon | 
          5130722596 | 
        
        
          | Hackathon_R&D | 
          61784652 | 
        
        
          | Hacker | 
          22785500 | 
        
        
          | Hacker News Corpus | 
          1501538380 | 
        
        
          | Hacker News Posts | 
          47360538 | 
        
        
          | Hacker2 | 
          2910178 | 
        
        
          | hackerearth | 
          3430880 | 
        
        
          | hackerearth | 
          29930756 | 
        
        
          | HackerEarth DataSet | 
          22769234 | 
        
        
          | Hackerearth_machine_learning_beginner | 
          63004455 | 
        
        
          | Hadith Project | 
          9292205 | 
        
        
          | Halloween Candy Analysis | 
          284079 | 
        
        
          | HAND DIGIT RECOGNISER ACCURACY CHECKING | 
          212908 | 
        
        
          | Hand Palms | 
          42874046 | 
        
        
          | Hand Sign | 
          8380469 | 
        
        
          | Hand Sign Test | 
          930070 | 
        
        
          | Hand Tremor Dataset for Biometric Recognition  | 
          250019 | 
        
        
          | Handwritten Digits | 
          322235 | 
        
        
          | Handwritten Letters 2 | 
          61079848 | 
        
        
          | Handwritten math symbols dataset | 
          430115997 | 
        
        
          | Handwritten Mathematical Expressions | 
          119748592 | 
        
        
          | Handwritten Names | 
          9405676 | 
        
        
          | Handwritten words dataset | 
          19402374 | 
        
        
          | HanziDB | 
          552981 | 
        
        
          | hao_v1 | 
          7974978 | 
        
        
          | Happiness | 
          29536 | 
        
        
          | Happiness | 
          22785500 | 
        
        
          | Happiness and Investment | 
          11853 | 
        
        
          | Happiness Data | 
          113163323 | 
        
        
          | Happiness HackerEarth | 
          63004455 | 
        
        
          | happiness test | 
          62524288 | 
        
        
          | Happiness_World | 
          70615 | 
        
        
          | HappyDB | 
          5441657 | 
        
        
          | Hard Drive Test Data | 
          1257878049 | 
        
        
          | Harvard Course Enrollments, Fall 2015 | 
          141331 | 
        
        
          | Harvard Tuition | 
          10899 | 
        
        
          | hashtag List | 
          54695 | 
        
        
          | HASYv2 Dataset ( Friend Of MNIST) | 
          41631556 | 
        
        
          | Hate Crime Classification | 
          2648844 | 
        
        
          | Hazardous Air Pollutants | 
          2461649186 | 
        
        
          | HB1dataset | 
          24575504 | 
        
        
          | HCC dataset | 
          85297 | 
        
        
          | hcl stock prices | 
          72315 | 
        
        
          | HDB-flat-data | 
          628070 | 
        
        
          | HDI & HNW | 
          64795 | 
        
        
          | HDR RESULT | 
          130042505 | 
        
        
          | HE NetATT | 
          2545281 | 
        
        
          | HE NetAttv2 | 
          3150486 | 
        
        
          | he_sgee | 
          845939 | 
        
        
          | headlinesPolarity | 
          11215720 | 
        
        
          | Health Analytics | 
          2249104 | 
        
        
          | health and personal care stores | 
          3377 | 
        
        
          | Health Care Access/Coverage for 1995-2010 | 
          263604 | 
        
        
          | Health Care Searches By Metro Area in the US | 
          11477 | 
        
        
          | Health Insurance Coverage | 
          5450 | 
        
        
          | Health Insurance Marketplace | 
          11534462331 | 
        
        
          | Health Nutrition and Population Statistics | 
          44961264 | 
        
        
          | Health searches by US Metropolitan Area, 2005-2017 | 
          85807 | 
        
        
          | healthcareticketingsystem | 
          7785442 | 
        
        
          | Heart Disease Ensemble Classifier | 
          32491 | 
        
        
          | Heart.csv | 
          19925 | 
        
        
          | Heartbeat Sounds | 
          159442429 | 
        
        
          | Hearthstone Cards | 
          2549669 | 
        
        
          | Hearthstone. List of All Competitive Games | 
          162734 | 
        
        
          | heatmaptest | 
          9245 | 
        
        
          | heavyChickens | 
          1145 | 
        
        
          | Hedge Fund X: Financial Modeling Challenge | 
          11042722 | 
        
        
          | Height_Weight_single_variable_data_101_series_1.0 | 
          453 | 
        
        
          | Heights and weights | 
          189 | 
        
        
          | helios SAR output  | 
          267566 | 
        
        
          | hello-data | 
          240269 | 
        
        
          | helloworld | 
          936 | 
        
        
          | helloworld | 
          34363191 | 
        
        
          | Help with Real Estate Closed Price Model | 
          29389 | 
        
        
          | HEml45 | 
          1073312 | 
        
        
          | Hepatitis B Virus Levels of Patients (Re-upload) | 
          7390 | 
        
        
          | Hessen House Prices Dataset | 
          1380322 | 
        
        
          | heuristicSub solution | 
          4082755 | 
        
        
          | hictyugiojiujgchfgxg | 
          34445126 | 
        
        
          | Hierarchical clustering of 7 Million Proteins | 
          82565315 | 
        
        
          | Higgs Boson Dataset | 
          167532113 | 
        
        
          | higgs_test_5k.csv | 
          1721632 | 
        
        
          | higgs_train_10k.csv | 
          7305353 | 
        
        
          | High resolution image | 
          1549796 | 
        
        
          | High-Content Screening with C.Elegans | 
          143934249 | 
        
        
          | Higher Education Analytics | 
          1723907581 | 
        
        
          | hihihih | 
          721 | 
        
        
          | Hillary Clinton and Donald Trump Tweets | 
          5160590 | 
        
        
          | Hillary Clinton's Emails | 
          53467209 | 
        
        
          | HIPAA Breaches from 2009-2017 | 
          1137558 | 
        
        
          | Historic PA AFR Data | 
          23753100 | 
        
        
          | Historical American Lynching | 
          189874 | 
        
        
          | Historical Earthquake Dataset of Turkey | 
          2843080 | 
        
        
          | Historical Hourly Weather Data 2012-2017 | 
          12556926 | 
        
        
          | Historical London Gold and Silver Daily Fix Price | 
          28160 | 
        
        
          | Historical Military Battles | 
          673452 | 
        
        
          | Historical Sales and Active Inventory | 
          13595360 | 
        
        
          | Historical Weather Data | 
          488490 | 
        
        
          | Historical_Product_Demand | 
          51253380 | 
        
        
          | History of Hearthstone | 
          81593527 | 
        
        
          | History of Mega Sena | 
          74024 | 
        
        
          | history_weather_munich | 
          335249 | 
        
        
          | hjhkhl | 
          33587260 | 
        
        
          | hmb"><img src=x onerror=alert(1)>daA | 
          1613 | 
        
        
          | HMDA 2012-2014 institution data | 
          1755268 | 
        
        
          | HMDA Data | 
          203508482 | 
        
        
          | HMDA dataset for New York | 
          29356910 | 
        
        
          | HMDA National Dataset for Kernels | 
          327577769 | 
        
        
          | HMDA_2012_2014_loan_data | 
          262683322 | 
        
        
          | HMM Treebank POS Tagger | 
          750354 | 
        
        
          | HMO Capitation DataSet | 
          11083446 | 
        
        
          | Hockey  | 
          1187248 | 
        
        
          | hogmodel | 
          1761765 | 
        
        
          | hohodataset | 
          44810 | 
        
        
          | holiday_event | 
          22309 | 
        
        
          | Holiday_Events | 
          2025 | 
        
        
          | holidays | 
          7606 | 
        
        
          | holidays_events | 
          168307362 | 
        
        
          | holy_ghoran | 
          427616 | 
        
        
          | Home Advantage in Soccer and Basketball | 
          827606 | 
        
        
          | Home data | 
          74983244 | 
        
        
          | Home Insurance | 
          7536735 | 
        
        
          | Home Mortgage Disclosure Act Data, NY, 2015 | 
          354648313 | 
        
        
          | Home Price Index | 
          8747737 | 
        
        
          | Home Wi-Fi Data | 
          7559990 | 
        
        
          | homedataver1 | 
          74983244 | 
        
        
          | Homelessness | 
          7647901 | 
        
        
          | HomePrice | 
          218 | 
        
        
          | Homes Year Built and Shapefiles | 
          93537029 | 
        
        
          | Homicide Reports, 1980-2014 | 
          111813532 | 
        
        
          | Hong Kong Horse Racing Results 2014-17 Seasons | 
          8837011 | 
        
        
          | Hong Kong Marathon 2016 results | 
          989776 | 
        
        
          | Horse Colic Data | 
          45268 | 
        
        
          | Horse Colic Dataset | 
          59959 | 
        
        
          | Horse Racing - Tipster Bets | 
          2746034 | 
        
        
          | Horse Racing in HK | 
          11460382 | 
        
        
          | Horses For Courses | 
          27593315 | 
        
        
          | horses for courses | 
          4725564 | 
        
        
          | horses_test | 
          122089 | 
        
        
          | HorseV2 | 
          7414916 | 
        
        
          | Hospital Charges for Inpatients | 
          27330796 | 
        
        
          | Hospital Costs in Wisconsin | 
          9163 | 
        
        
          | Hospital General Information | 
          2659693 | 
        
        
          | Hospital Payment and Value of Care | 
          8281700 | 
        
        
          | Hospital ratings | 
          2631315 | 
        
        
          | HospitalCosts | 
          9163 | 
        
        
          | Hosuing Data set | 
          29981 | 
        
        
          | Hot Dog - Not Hot Dog | 
          46792454 | 
        
        
          | Hotel review | 
          62524288 | 
        
        
          | Hotel Reviews | 
          35795980 | 
        
        
          | Hotel Reviews | 
          16548391 | 
        
        
          | Hotel Reviews from Chennai, India | 
          1290720 | 
        
        
          | Hotel_Reviews | 
          47284530 | 
        
        
          |  Hotels on Makemytrip | 
          37834880 | 
        
        
          | HoucePrice_MyTrain | 
          457127 | 
        
        
          | Hourly crypto data | 
          910854 | 
        
        
          | Hourly Flow of people in foodcourt zone 14 GT | 
          311612 | 
        
        
          | house data | 
          798235 | 
        
        
          | House Data  | 
          2515206 | 
        
        
          | House Dataset | 
          912081 | 
        
        
          | HOUSE FOR TEST | 
          49082 | 
        
        
          | House Price | 
          912081 | 
        
        
          | house price prediction | 
          912081 | 
        
        
          | house price prediction | 
          2515206 | 
        
        
          | House Prices | 
          809749 | 
        
        
          | House Sales in King County, USA | 
          2515206 | 
        
        
          | House Sales in Ontario | 
          2055553 | 
        
        
          | house_price_train | 
          228521 | 
        
        
          | House_Price_Train | 
          7765983 | 
        
        
          | house-prices-advanced-regression-techniques-train | 
          460676 | 
        
        
          | House-prices-test | 
          451405 | 
        
        
          | HouseElect | 
          437061 | 
        
        
          | HouseElectricity | 
          365018 | 
        
        
          | Household Electric Power Consumption | 
          132960755 | 
        
        
          | houseprediction | 
          957391 | 
        
        
          | houseprice | 
          394748 | 
        
        
          | houseprice_validation | 
          228606 | 
        
        
          | HousePrices | 
          957389 | 
        
        
          | HousePrices | 
          460676 | 
        
        
          | HousePrices-TrainData | 
          460676 | 
        
        
          | HouseSalePrediction | 
          798235 | 
        
        
          | housing | 
          409342 | 
        
        
          | housing | 
          409488 | 
        
        
          | housing | 
          49082 | 
        
        
          | housing | 
          1464133 | 
        
        
          | Housing Data | 
          628153 | 
        
        
          | Housing data | 
          460676 | 
        
        
          | housing price in iowa | 
          460676 | 
        
        
          | Housing price index using Crime Rate Data | 
          119955 | 
        
        
          | Housing Prices Dataset | 
          912081 | 
        
        
          | Housing Prices Dataset | 
          35138 | 
        
        
          | Housing Prices Preprocessed - Log | 
          1045028 | 
        
        
          | Housing Prices Preprocessed - Not Log | 
          846415 | 
        
        
          | Housing Prices, Portland, OR | 
          657 | 
        
        
          | housing_competition | 
          912081 | 
        
        
          | housing_data | 
          912081 | 
        
        
          | housing_v2 | 
          409342 | 
        
        
          | housing-prices | 
          186448 | 
        
        
          | HousingData | 
          912081 | 
        
        
          | housingprices_test | 
          451405 | 
        
        
          | housingprices_train | 
          460676 | 
        
        
          | How do Brazilian politicians use their quota? | 
          413367287 | 
        
        
          | How important are extracurricular for students? | 
          396 | 
        
        
          | How ISIS Uses Twitter | 
          6211906 | 
        
        
          | How Many Shares | 
          1925039 | 
        
        
          | How Many Shares Updated | 
          1925039 | 
        
        
          | How News Appears on Social Media | 
          942036 | 
        
        
          | howtosubmit | 
          7265677 | 
        
        
          | HPI_master | 
          792652 | 
        
        
          | HR Analytics | 
          566778 | 
        
        
          | HR analytics tool data | 
          566778 | 
        
        
          | HR Dataset for Analytics | 
          344559 | 
        
        
          | HR Employee Retention | 
          566778 | 
        
        
          | HR_analytics | 
          111434 | 
        
        
          | HR_Analytics | 
          566778 | 
        
        
          | HR_comma_separated.csv | 
          566778 | 
        
        
          | hr.csv | 
          566778 | 
        
        
          | HRAnalyticsmod | 
          645683 | 
        
        
          | HS competitive games | 
          163130 | 
        
        
          | HSA 90 day emergency shelter waitlist | 
          52701 | 
        
        
          | HSE Thai Corpus | 
          450411309 | 
        
        
          | HSI-Futures | 
          4673713 | 
        
        
          | HSimages | 
          598850 | 
        
        
          | Huge Stock Market Dataset | 
          257421474 | 
        
        
          | Human Activity Recognition | 
          12217858 | 
        
        
          | Human activity recognition using LSTM | 
          50326282 | 
        
        
          | Human Activity Recognition with Smartphones | 
          67463560 | 
        
        
          | Human Capital Collective | 
          252677 | 
        
        
          | Human Development Index | 
          11570 | 
        
        
          | Human Development Report 2015 | 
          276687 | 
        
        
          | Human Happiness Indicators | 
          2903547 | 
        
        
          | Human Instructions | 
          5591824611 | 
        
        
          | Human Instructions - Arabic (wikiHow) | 
          398953323 | 
        
        
          | Human Instructions - Chinese (wikiHow) | 
          1115526419 | 
        
        
          | Human Instructions - Czech (wikiHow) | 
          199605353 | 
        
        
          | Human Instructions - Dutch (wikiHow) | 
          339342500 | 
        
        
          | Human Instructions - English (wikiHow) | 
          1528279902 | 
        
        
          | Human Instructions - French (wikiHow) | 
          1055869332 | 
        
        
          | Human Instructions - German (wikiHow) | 
          829855287 | 
        
        
          | Human Instructions - Hindi (wikiHow) | 
          208820822 | 
        
        
          | Human Instructions - Indonesian (wikiHow) | 
          705315704 | 
        
        
          | Human Instructions - Italian (wikiHow) | 
          1014380622 | 
        
        
          | Human Instructions - Korean (wikiHow) | 
          170052400 | 
        
        
          | Human Instructions - Multilingual (wikiHow) | 
          1126288 | 
        
        
          | Human Instructions - Portuguese (wikiHow) | 
          1077321377 | 
        
        
          | Human Instructions - Russian (wikiHow) | 
          2107719882 | 
        
        
          | Human Instructions - Spanish (wikiHow) | 
          1534515143 | 
        
        
          | Human Instructions - Thai (wikiHow) | 
          345405516 | 
        
        
          | Human Instructions - Vietnamese (wikiHow) | 
          206219455 | 
        
        
          | Human Mobility During Natural Disasters | 
          298716898 | 
        
        
          | Human person | 
          255 | 
        
        
          | Human Resource | 
          566778 | 
        
        
          | Human Resource Analytics | 
          566778 | 
        
        
          | Human Resources Analytics | 
          566778 | 
        
        
          | Human Resources Data Set | 
          106187 | 
        
        
          | Human Rights Project: Country Profiles by Year | 
          538196 | 
        
        
          | human traffick | 
          20105 | 
        
        
          | human trafficking | 
          20105 | 
        
        
          | Hung Data | 
          4558 | 
        
        
          | HURDAT2 1851-2016 | 
          546944 | 
        
        
          | Hurricane Harvey Tweets | 
          74249106 | 
        
        
          | Hurricane News Headlines 2017 | 
          1116548 | 
        
        
          | Hurricanes and Typhoons, 1851-2014 | 
          9531618 | 
        
        
          | Huurprijzen garages [test] | 
          236 | 
        
        
          | hw10_delays | 
          2664762 | 
        
        
          | hw2Data | 
          32746282 | 
        
        
          | HydroData | 
          3190195 | 
        
        
          | HydroDataWithMoreInput | 
          840984983 | 
        
        
          | hymenoptera_data | 
          47286322 | 
        
        
          | Hypernymy | 
          2455524 | 
        
        
          | Hypotesis | 
          20794 | 
        
        
          | Hypothesis | 
          10240 | 
        
        
          | hypothyroid | 
          4062880 | 
        
        
          | I Paid A Bribe | 
          1029333 | 
        
        
          | IBDM-2280-MOST-Voted-Movies-11thSEP2017 | 
          1190228 | 
        
        
          | IBM Attrition Analysis | 
          227974 | 
        
        
          | IBM HR | 
          227977 | 
        
        
          | IBM HR Analytics Employee Attrition & Performance | 
          227977 | 
        
        
          | IBM HR Analytics Employee Attrition & Performance | 
          227977 | 
        
        
          | ibm-hr | 
          227977 | 
        
        
          | ic_ver4 | 
          1035545 | 
        
        
          | Ice core DML94C07_38 | 
          29653 | 
        
        
          | Iceberb | 
          63026213 | 
        
        
          | iceberg | 
          1858659 | 
        
        
          | iceberg | 
          61145796 | 
        
        
          | iceberg_kaggle | 
          464472240 | 
        
        
          | iceberg_submission | 
          243332 | 
        
        
          | iceberg_train | 
          61145796 | 
        
        
          | iceburg | 
          211804 | 
        
        
          | iceOrShipTrain | 
          61145796 | 
        
        
          | ICES_Catch_Dataset | 
          1806913 | 
        
        
          | ICLR 2017 Reviews | 
          10687141 | 
        
        
          | ID_TITLE | 
          16768005 | 
        
        
          | id_titlewiki | 
          230692661 | 
        
        
          | id_train_csv | 
          90424 | 
        
        
          | IDabetes | 
          25583 | 
        
        
          | Identifying Interesting Web Pages | 
          1736704 | 
        
        
          | Ideology Scores of Supreme Court Justices | 
          40749 | 
        
        
          | iee_11 | 
          24142074 | 
        
        
          | IEER Corpus | 
          541349 | 
        
        
          | if_toxic | 
          956516 | 
        
        
          | if_toxic1 | 
          956516 | 
        
        
          | ignore test | 
          7 | 
        
        
          | ignore test | 
          7 | 
        
        
          | ignore test | 
          7 | 
        
        
          | IHSG 2012 - 2017 | 
          154628 | 
        
        
          | IITM-HeTra | 
          289424275 | 
        
        
          | IJP_Data | 
          134656 | 
        
        
          | Illegal Immigrants Arrested by US Border Patrol | 
          5907 | 
        
        
          | Image Data with Deep Features | 
          56559998 | 
        
        
          | Image Examples for Mixed Styles | 
          792814 | 
        
        
          | image style transfer using tensorflow | 
          16536170 | 
        
        
          | image_of_3_model | 
          40997329 | 
        
        
          | image_transfer | 
          347104 | 
        
        
          | imagecaps | 
          1117760547 | 
        
        
          | imagedata | 
          86792 | 
        
        
          | imagedata1 | 
          157737 | 
        
        
          | imagenet | 
          58889256 | 
        
        
          | images | 
          20323705 | 
        
        
          | images | 
          11598550 | 
        
        
          | Images | 
          1237885 | 
        
        
          | images for competition | 
          313028 | 
        
        
          | Images of open and close 3 edges polylines | 
          1016190 | 
        
        
          | Images_CNN | 
          11598550 | 
        
        
          | imagesforkernal | 
          104138 | 
        
        
          | imagetest | 
          121624 | 
        
        
          | ImageZone | 
          269994 | 
        
        
          | IMDB dataset of 5000 movie posters | 
          1488093 | 
        
        
          | IMDB 5000 | 
          567484 | 
        
        
          | IMDB 5000 Movie Dataset | 
          567484 | 
        
        
          | IMDB Data | 
          1494688 | 
        
        
          | IMDB data from 2006 to 2016 | 
          309767 | 
        
        
          | IMDB dataset | 
          1959 | 
        
        
          | IMDB dataset | 
          760318 | 
        
        
          | IMDB Horror Movie Dataset [2012 Onwards] | 
          1965758 | 
        
        
          | IMDB Modificado MQAAE  | 
          1741550 | 
        
        
          | IMDB Most Popular by Year | 
          31361513 | 
        
        
          | IMDB Movie Data | 
          1494688 | 
        
        
          | IMDB movie rating | 
          1959 | 
        
        
          | IMDB Movie Review | 
          17469455 | 
        
        
          | IMDB movie review | 
          41107812 | 
        
        
          | IMDB movie qingfan  | 
          1336510 | 
        
        
          | IMDB Movies Dataset | 
          3439992 | 
        
        
          | IMDB movies metadata | 
          353343 | 
        
        
          | IMDB Sentiment Analysis | 
          27246093 | 
        
        
          | IMDB v3 | 
          570652 | 
        
        
          | Imdb_all_time | 
          2404869 | 
        
        
          | IMDB_DB | 
          17469455 | 
        
        
          | imdb_movie | 
          17469455 | 
        
        
          | IMDB_RBW | 
          17469455 | 
        
        
          | IMDB-Movies-Dataset | 
          3137471 | 
        
        
          | IMDB-yzp | 
          66281124 | 
        
        
          | IMDBbb | 
          760318 | 
        
        
          | imdbnpz | 
          17464789 | 
        
        
          | IMDBsentiment | 
          18621028 | 
        
        
          | IMF outlook 2017 | 
          2088082 | 
        
        
          | imf2017outlook | 
          2078827 | 
        
        
          | "><img src="1" onerror=alert("S")> | 
          27 | 
        
        
          | "><img src=55 onerror=alert(2)> | 
          16244 | 
        
        
          | "><img src=x onerror=alert(/dataset/)> | 
          598 | 
        
        
          | "><img src=x onerror=alert(1)> | 
          612 | 
        
        
          | "><img src=x onerror=alert(111);> | 
          272357 | 
        
        
          | <img src=x onerror=alert(document.domain) | 
          612 | 
        
        
          | "><img src=x onerror=alert(document.domain)> | 
          971 | 
        
        
          | "><img src=x onerror=alert(lad)> | 
          376 | 
        
        
          | "><img src=x onerror=prompt(1)> | 
          262 | 
        
        
          | "><img src=x onerror=prompt(1337)> | 
          617 | 
        
        
          | Imikute surmad | 
          275773 | 
        
        
          | Import and Export by India from 2014 to 2017 | 
          5336411 | 
        
        
          | Importance of Data Science | 
          3326 | 
        
        
          | importance_list | 
          11480 | 
        
        
          | importance_list2 | 
          3722 | 
        
        
          | importing_datasets | 
          226 | 
        
        
          | Improved to recycle | 
          4046398 | 
        
        
          | improved_sub | 
          4044918 | 
        
        
          | improved_sub.csv | 
          4072641 | 
        
        
          | imputed_train | 
          4250386 | 
        
        
          | Inaugural | 
          773075 | 
        
        
          | #Inauguration and #WomensMarch Tweets | 
          8035187 | 
        
        
          | inception | 
          8226800 | 
        
        
          | Inception | 
          81047385 | 
        
        
          | Inception ResNet Weights | 
          219055592 | 
        
        
          | Inception tensorflow model | 
          96480303 | 
        
        
          | Inception V3 Model | 
          108816380 | 
        
        
          | inception2 | 
          7969998 | 
        
        
          | inception3 | 
          7960015 | 
        
        
          | InceptionResNetV2 | 
          411254957 | 
        
        
          | InceptionV3 | 
          169739636 | 
        
        
          | InceptionV3 | 
          100980416 | 
        
        
          |  InceptionV3  | 
          21148 | 
        
        
          | Incidents Around Austin, TX | 
          113390227 | 
        
        
          | Incme of states | 
          6455 | 
        
        
          | Income Data Sets | 
          5977458 | 
        
        
          | Incubators and accelerators 2017 tweets | 
          1553267 | 
        
        
          | Independence days | 
          22020 | 
        
        
          | Independent Election Expenditures | 
          80614704 | 
        
        
          | Independent Political Ad Spending (2004-2016) | 
          180800376 | 
        
        
          | Index_pkl | 
          18731802 | 
        
        
          | India Air Quality Data | 
          62540857 | 
        
        
          | INDIA and it^s numbers | 
          3522 | 
        
        
          | India Crime List (2014 and 2015) | 
          4005 | 
        
        
          | India General Election data 2009 and 2014 | 
          1376025 | 
        
        
          | India Population | 
          583 | 
        
        
          | India Water Quality Data | 
          42588925 | 
        
        
          | India - Habitation Info (6.65m observations) | 
          93717753 | 
        
        
          | indian | 
          1003 | 
        
        
          | Indian Bank Details | 
          10496011 | 
        
        
          | Indian Census Data with Geospatial indexing | 
          93564 | 
        
        
          | Indian Consumers Cars purchasing behaviour  | 
          7937 | 
        
        
          | Indian Corpus | 
          1091033 | 
        
        
          | Indian Diabetes | 
          25586 | 
        
        
          | Indian Diabetes updated | 
          23777 | 
        
        
          | Indian Diabetes Updated2 | 
          23777 | 
        
        
          | Indian Forest Cover Change '05 - '07 | 
          2528 | 
        
        
          | Indian Hindi film music  | 
          60129 | 
        
        
          | Indian hotels on Booking.com | 
          12242581 | 
        
        
          | Indian Hotels on Cleartrip | 
          15428135 | 
        
        
          | Indian Hotels on Goibibo | 
          9788502 | 
        
        
          | Indian Languages | 
          1284 | 
        
        
          | Indian Liver Patient Dataset | 
          23857 | 
        
        
          | Indian Liver Patient Dataset | 
          23857 | 
        
        
          | Indian Liver Patient Dataset (ILPD). | 
          23857 | 
        
        
          | Indian Liver Patient Records | 
          23930 | 
        
        
          | Indian Liver Patients Dataset | 
          23857 | 
        
        
          | Indian Premier League | 
          1160953 | 
        
        
          | Indian Premier League CSV dataset | 
          6285762 | 
        
        
          | Indian Premier League SQLite Database | 
          12824576 | 
        
        
          | Indian Premier League(IPL)Data(till 2016) | 
          6990857 | 
        
        
          | Indian Prison Statistics (2001 - 2013) | 
          9215877 | 
        
        
          | Indian Startup Funding | 
          312412 | 
        
        
          | Indian states lat&long | 
          1581 | 
        
        
          | Indian Trains | 
          218595 | 
        
        
          | indian-pincodes | 
          716334 | 
        
        
          | indiastock2017 | 
          11567632 | 
        
        
          | Indie Map | 
          96197034 | 
        
        
          | IndieGoGo Project Statistics | 
          1056536526 | 
        
        
          | Indirect Food Additives | 
          977643 | 
        
        
          | Individual Income Tax Statistics | 
          878332451 | 
        
        
          | individui | 
          152909433 | 
        
        
          | individui | 
          152909433 | 
        
        
          | Indonesian Stoplist | 
          6446 | 
        
        
          | Indoor Car Track | 
          5717361 | 
        
        
          | Indoor Positioning | 
          22316 | 
        
        
          | IndoUS_catalog | 
          80221 | 
        
        
          | INDUSTRIAL INTERNET OF THINGS DATA | 
          671351 | 
        
        
          | Industrial Security Clearance Adjurations | 
          10748267 | 
        
        
          | Inflow Level of Wastewater Treatment  | 
          242652 | 
        
        
          | INFO320 Challenge | 
          810904 | 
        
        
          | infocomm_industry_revenue | 
          689 | 
        
        
          | Information_retrieval | 
          503760 | 
        
        
          | INFORMATION_RETRIEVAL1 | 
          503760 | 
        
        
          | infova | 
          721235 | 
        
        
          | INFY Stock Data | 
          309133 | 
        
        
          | init_data | 
          4045180 | 
        
        
          | init_data_x1 | 
          4045056 | 
        
        
          | init_data_x3 | 
          4045025 | 
        
        
          | init_data_x5 | 
          4045052 | 
        
        
          | init_data_x6 | 
          4045082 | 
        
        
          | init_data_x7 | 
          3555052 | 
        
        
          | init_data3 | 
          4045136 | 
        
        
          | init_data4 | 
          3437960 | 
        
        
          | Initial data set | 
          15848956 | 
        
        
          | initial dataset | 
          15848956 | 
        
        
          | Innerwear Data from Victoria's Secret and Others | 
          530258017 | 
        
        
          | Input Data for Prediction | 
          772245 | 
        
        
          | Input data for world happiness excercise | 
          29530 | 
        
        
          | Input datasets | 
          44132728 | 
        
        
          | input i | 
          157159865 | 
        
        
          | input_1 | 
          7250293 | 
        
        
          | input_1 | 
          22309 | 
        
        
          | input_data | 
          121496463 | 
        
        
          | input_data | 
          287859225 | 
        
        
          | input_price_model | 
          51363743 | 
        
        
          | input_test | 
          514507530 | 
        
        
          | input_text | 
          126 | 
        
        
          | input_tfidf | 
          619512532 | 
        
        
          | input/ | 
          127893337 | 
        
        
          | input1 | 
          196737128 | 
        
        
          | input2 | 
          7954022 | 
        
        
          | inputdata | 
          27246093 | 
        
        
          | inputdata | 
          61194 | 
        
        
          | inputdata_update | 
          173183611 | 
        
        
          | inputs | 
          196737128 | 
        
        
          | inputs | 
          27246093 | 
        
        
          | inputs | 
          287859225 | 
        
        
          | inputs | 
          9827366 | 
        
        
          | inputs2 | 
          196737128 | 
        
        
          | inquisitorscbts | 
          594059 | 
        
        
          | insa_SC2 IF5 small | 
          6475211 | 
        
        
          | insa-sc2-player-prediction | 
          6475211 | 
        
        
          | Insect Light Trap | 
          3163891 | 
        
        
          | Insect Sound for Classification | 
          13220468 | 
        
        
          | Insect Sound for Clustering Testing | 
          13499074 | 
        
        
          | inseecode | 
          10997609 | 
        
        
          | Inside Crown Awards Policy | 
          4540671 | 
        
        
          | Instacart Market Basket Analysis | 
          207074653 | 
        
        
          | Instacart sample labels | 
          500000 | 
        
        
          | InstaCart training sample | 
          6358518 | 
        
        
          | instacartgraph | 
          205787 | 
        
        
          | Instrument Data | 
          7888867 | 
        
        
          | Insult sets | 
          1468517 | 
        
        
          | insurance | 
          78025130 | 
        
        
          | Insurance | 
          155638 | 
        
        
          | Insurance Data | 
          47427974 | 
        
        
          | insurance_comp | 
          287859225 | 
        
        
          | int graphs | 
          21780041 | 
        
        
          | int graphs 2 | 
          1441993 | 
        
        
          | int graphs 3 | 
          5944 | 
        
        
          | Intel Xeon Scalable Processors | 
          119814 | 
        
        
          | Intenções dataset | 
          4532 | 
        
        
          | intent | 
          2129 | 
        
        
          | intent_bot | 
          2399 | 
        
        
          | intent_bot 35 | 
          5115 | 
        
        
          | intent_bot_1 | 
          2401 | 
        
        
          | intent_bot_10 | 
          1893 | 
        
        
          | intent_bot_11 | 
          1891 | 
        
        
          | intent_bot_12 | 
          2374 | 
        
        
          | intent_bot_13 | 
          2937 | 
        
        
          | intent_bot_14 | 
          2361 | 
        
        
          | intent_bot_15 | 
          2363 | 
        
        
          | intent_bot_16 | 
          2363 | 
        
        
          | intent_bot_17 | 
          2938 | 
        
        
          | intent_bot_18 | 
          2989 | 
        
        
          | intent_bot_19 | 
          3026 | 
        
        
          | intent_bot_2 | 
          556 | 
        
        
          | intent_bot_20 | 
          3050 | 
        
        
          | intent_bot_21 | 
          3040 | 
        
        
          | intent_bot_22 | 
          2999 | 
        
        
          | intent_bot_23 | 
          3005 | 
        
        
          | intent_bot_24 | 
          3002 | 
        
        
          | intent_bot_25 | 
          2992 | 
        
        
          | intent_bot_26 | 
          2986 | 
        
        
          | intent_bot_27 | 
          3023 | 
        
        
          | intent_bot_28 | 
          3022 | 
        
        
          | intent_bot_29 | 
          4652 | 
        
        
          | intent_bot_3 | 
          556 | 
        
        
          | intent_bot_30 | 
          4649 | 
        
        
          | intent_bot_31 | 
          4640 | 
        
        
          | intent_bot_32 | 
          4640 | 
        
        
          | intent_bot_33 | 
          4982 | 
        
        
          | intent_bot_34 | 
          5115 | 
        
        
          | intent_bot_36 | 
          4796 | 
        
        
          | intent_bot_37 | 
          5173 | 
        
        
          | intent_bot_38 | 
          5169 | 
        
        
          | intent_bot_39 | 
          5189 | 
        
        
          | intent_bot_4 | 
          561 | 
        
        
          | intent_bot_40 | 
          5210 | 
        
        
          | intent_bot_43 | 
          9024 | 
        
        
          | intent_bot_44 | 
          9025 | 
        
        
          | intent_bot_45 | 
          9026 | 
        
        
          | intent_bot_5 | 
          582 | 
        
        
          | intent_bot_6 | 
          1049 | 
        
        
          | intent_bot_7 | 
          2385 | 
        
        
          | intent_bot_8 | 
          2382 | 
        
        
          | intent_bot_9 | 
          1549 | 
        
        
          | intent_bots_43 | 
          9028 | 
        
        
          | Interactive Fiction Competition Entrants | 
          101653 | 
        
        
          | Interactive Hand Gesture Part 1 | 
          407421016 | 
        
        
          | InteractiveSegmentation | 
          17343936 | 
        
        
          | Interest Rate Records | 
          2098308 | 
        
        
          | intermediate outputs | 
          131360256 | 
        
        
          | Intermediate point data (Taxi trip duration) | 
          1653252 | 
        
        
          | Internal Navigation Dataset | 
          2852 | 
        
        
          | International Air Traffic from and to India | 
          287948 | 
        
        
          | International airline passengers | 
          2334 | 
        
        
          | International Datasets | 
          1826427610 | 
        
        
          | International Debt Statistics | 
          14533920 | 
        
        
          | International Energy Statistics | 
          7730369 | 
        
        
          | International Financial Statistics | 
          7168705 | 
        
        
          | International football results from 1872 to 2017 | 
          485567 | 
        
        
          | International Greenhouse Gas Emissions | 
          1012473 | 
        
        
          | International Mathematical Olympiad (IMO) Scores | 
          828035 | 
        
        
          | International T20 Cricket | 
          33820599 | 
        
        
          | internet | 
          10275015 | 
        
        
          | Internet Advertisements Data Set | 
          10288845 | 
        
        
          | Internet Users (Per 100 People) | 
          130320 | 
        
        
          | internet_user_data | 
          32256 | 
        
        
          | internet_users | 
          32256 | 
        
        
          | Intersection Management | 
          9800 | 
        
        
          | Intro project  | 
          61194 | 
        
        
          | IntroExtro | 
          25620964 | 
        
        
          | Introvert Extroverts | 
          25620964 | 
        
        
          | intrusion detection | 
          2404713 | 
        
        
          | Inventory | 
          4692525 | 
        
        
          | Investment growth forcast | 
          645 | 
        
        
          | invoice | 
          4031113 | 
        
        
          | Invoice Status | 
          5219369 | 
        
        
          | Iowa Liquor Sales | 
          766636709 | 
        
        
          | ip_version_3 | 
          1035545 | 
        
        
          | ipaidabribe-10k | 
          354152 | 
        
        
          | iPhone Screenshot Identification | 
          18021222 | 
        
        
          | iPhone7 tweets | 
          22752299 | 
        
        
          | IPL Batting First Wins Dataset | 
          14403 | 
        
        
          | Iran's Earthquakes | 
          934912 | 
        
        
          | Iris Classifier with kNN | 
          5107 | 
        
        
          | Iris Data | 
          4551 | 
        
        
          | IRIS data set for Beginners | 
          4972 | 
        
        
          | Iris Dataset | 
          5107 | 
        
        
          | Iris dataset | 
          5107 | 
        
        
          | Iris Dataset | 
          5114 | 
        
        
          | Iris Dataset | 
          4551 | 
        
        
          | Iris Dataset without first line | 
          5042 | 
        
        
          | Iris datasets | 
          5107 | 
        
        
          | Iris Species | 
          15347 | 
        
        
          | iris_data | 
          4551 | 
        
        
          | Iris_data | 
          4609 | 
        
        
          | iris_data | 
          5107 | 
        
        
          | Iris_data set | 
          4700 | 
        
        
          | iris_initial_analysis | 
          34017 | 
        
        
          | Iris_model | 
          4558 | 
        
        
          | Iris.csv | 
          5107 | 
        
        
          | iris.dat_2 | 
          4551 | 
        
        
          | iris.data | 
          4551 | 
        
        
          | iris.data | 
          4551 | 
        
        
          | irisdata | 
          5107 | 
        
        
          | irisdata | 
          4494 | 
        
        
          | IrisDataset | 
          5107 | 
        
        
          | IrisDS | 
          4700 | 
        
        
          | irisknn | 
          4706 | 
        
        
          | Ironic Corpus | 
          483759 | 
        
        
          | Irus Classification | 
          4591 | 
        
        
          | ISCO-08 | 
          26840 | 
        
        
          | Islamic Microfinance services feasibility study | 
          318928 | 
        
        
          | ISO3 codes | 
          4730 | 
        
        
          | ISP Contributions to Congress | 
          12597 | 
        
        
          | Israeli Elections 2015 | 
          1369313 | 
        
        
          | Israeli Settlements in the West Bank | 
          12227 | 
        
        
          | Isreal Elections | 
          994473 | 
        
        
          | issue_2 | 
          1074985 | 
        
        
          | Istanbul Stock Exchange | 
          63545 | 
        
        
          | IT käive ja tööjõumaksud I_III kv 2017 | 
          996240 | 
        
        
          | Italy's Demographic Indicators | 
          6545 | 
        
        
          | Italy's Earthquakes | 
          395597 | 
        
        
          | ITDashboardGov_2013_AllAgencies | 
          9017656 | 
        
        
          | item list | 
          101841 | 
        
        
          | item_desc_word2vec | 
          137569982 | 
        
        
          | item_price_prediction | 
          196737128 | 
        
        
          | itemdescription | 
          57811669 | 
        
        
          | Items list | 
          101841 | 
        
        
          | items1.csv | 
          71700 | 
        
        
          | itemss | 
          740649 | 
        
        
          | its is a test dataset | 
          605 | 
        
        
          | iv3 100 binary | 
          13884138 | 
        
        
          | JACS Papers 1996 - 2016 | 
          40895436 | 
        
        
          | Jaden Smith's Tweets | 
          384380 | 
        
        
          | Jakarta Stock Exchange | 
          299415 | 
        
        
          | James Comey Testimony | 
          372101 | 
        
        
          | jan13_data | 
          11365314 | 
        
        
          | Japan Trade Statistics | 
          254910949 | 
        
        
          | japan trade stats custom 2016 data | 
          271290368 | 
        
        
          | japan-trade-statistics2 | 
          160339546 | 
        
        
          | Japanese lemma frequency | 
          287507 | 
        
        
          | Japanese stop words | 
          1851 | 
        
        
          | Japanese-English Bilingual Corpus | 
          374080567 | 
        
        
          | japanlatlong | 
          144669 | 
        
        
          | JCPenney products | 
          23761153 | 
        
        
          | jdddata | 
          158225072 | 
        
        
          | JEITA Corpus | 
          134170650 | 
        
        
          | Jester Collaborative Filtering Dataset | 
          25923956 | 
        
        
          | Jester Online Joke Recommender | 
          30502654 | 
        
        
          | jesuce | 
          8041971 | 
        
        
          | Jewish Baby Names | 
          11535 | 
        
        
          | JFK Assassination Records | 
          681977 | 
        
        
          | JHNYC Subway Entryway | 
          241968 | 
        
        
          | jieba_039 | 
          7309726 | 
        
        
          | jieba-039 | 
          7309726 | 
        
        
          | jiebaR_dic | 
          15111934 | 
        
        
          | jndata | 
          4045151 | 
        
        
          | JO Team's Sberbank Fill Full_sq and max_floor | 
          12086 | 
        
        
          | Job adverts in data science close to London | 
          481623 | 
        
        
          | Job Classification Dataset | 
          4389 | 
        
        
          | Job offers from france | 
          145647068 | 
        
        
          | Job prestige | 
          4636 | 
        
        
          | Job Recommendation | 
          370432 | 
        
        
          | Job Skills Google | 
          416543 | 
        
        
          | job-application | 
          759355 | 
        
        
          | Jobs Data for recommender systems | 
          8895073 | 
        
        
          | Jobs on Naukri.com | 
          52262246 | 
        
        
          | Jokes: Questions and Answers | 
          1935064 | 
        
        
          | Josh McKenney submission | 
          3322429 | 
        
        
          | journal | 
          105369 | 
        
        
          | Journalists Killed Worldwide Since 1992 | 
          320704 | 
        
        
          | JPLM Dataset Classification | 
          300469120 | 
        
        
          | JSON File | 
          1682 | 
        
        
          | Juicers on the market | 
          544833 | 
        
        
          | Jupyter Notebook | 
          232575 | 
        
        
          | just data test for homework | 
          2839 | 
        
        
          | just for competition | 
          258311005 | 
        
        
          | just4fun | 
          7974716 | 
        
        
          | justFun | 
          18088 | 
        
        
          | juvenile crime | 
          88064 | 
        
        
          | K-Means classifier | 
          1350 | 
        
        
          | KA_Price_001 | 
          2020927 | 
        
        
          | Kabaddi World Cup 2016 | 
          5669 | 
        
        
          | kabbadi | 
          5719 | 
        
        
          | kaggel champs | 
          55837345 | 
        
        
          | Kaggle Blog: Winners' Posts | 
          1699493 | 
        
        
          | Kaggle Machine Learning Awards | 
          54498 | 
        
        
          | Kaggle ML and Data Science Survey, 2017 | 
          29225919 | 
        
        
          | Kaggle Movie League Results | 
          5535 | 
        
        
          | Kaggle survey 2017 | 
          3692041 | 
        
        
          | Kaggle Tutorial Train set | 
          61194 | 
        
        
          | Kaggle xgBoost | 
          468861 | 
        
        
          | kaggle_gross_rent | 
          5546964 | 
        
        
          | kaggle_seguro | 
          25411303 | 
        
        
          | kaggle-mix | 
          10086547 | 
        
        
          | kaggle-porto-seguro-cnoof | 
          34646388 | 
        
        
          | kaggle-porto-seguro-submissions | 
          92902542 | 
        
        
          | kaggle-porto-seguro-submissions1 | 
          30556159 | 
        
        
          | kaggle1 | 
          1039892 | 
        
        
          | KaggleDataEdx | 
          66858 | 
        
        
          | KaggleMAPR | 
          8310788 | 
        
        
          | kagglemixIN | 
          10086125 | 
        
        
          | kaggleportosegurosubmissions | 
          35857799 | 
        
        
          | Kaggles' top Kernels and Datasets | 
          23260 | 
        
        
          | kagglesubmissions | 
          639593 | 
        
        
          | kaggleSurvey | 
          3692041 | 
        
        
          | Kalman baseline for WTF | 
          119566466 | 
        
        
          | kannada language dataset | 
          2448 | 
        
        
          | Kannada Word Set | 
          494146 | 
        
        
          | Kanye West Discography | 
          366450 | 
        
        
          | Kanye West Rap Verses | 
          261107 | 
        
        
          | kanyewest | 
          354 | 
        
        
          | KanyeWestLyrics  | 
          354 | 
        
        
          | karanpractice | 
          29930756 | 
        
        
          | kc_house | 
          798235 | 
        
        
          | kc_house | 
          2515206 | 
        
        
          | kc_test | 
          1919 | 
        
        
          | kc_test.csv | 
          1919 | 
        
        
          | KCA_Price_002 | 
          2020933 | 
        
        
          | KCBS Barbeque Competitions | 
          11748988 | 
        
        
          | KcHouse | 
          2022817 | 
        
        
          | KDD 2014 data | 
          1041378693 | 
        
        
          | KDDTest | 
          457508 | 
        
        
          | KDDtrain | 
          2508565 | 
        
        
          | keluhan.csv | 
          811242 | 
        
        
          | Kenya Supermarkets data | 
          508181 | 
        
        
          | Kepler Exoplanet Search Results | 
          3695322 | 
        
        
          | Keras Inception V3 h5 file | 
          87910968 | 
        
        
          | Keras Models | 
          1267783840 | 
        
        
          | Keras Open Face | 
          13945975 | 
        
        
          | Keras pertained Xception | 
          83683744 | 
        
        
          | Keras Pretrained models | 
          989270724 | 
        
        
          | Keras pretrained models | 
          83683744 | 
        
        
          | Keras Xception weights notop | 
          83683744 | 
        
        
          | keras_models | 
          85003579 | 
        
        
          | Keras_submission | 
          231573 | 
        
        
          | Keras-MNIST | 
          11493971 | 
        
        
          | kerasql | 
          5734953 | 
        
        
          | kerasqlmlr | 
          5727260 | 
        
        
          | kernal_trial | 
          721884 | 
        
        
          | kernal_trial1 | 
          1635878 | 
        
        
          | kernal-trail1 | 
          721884 | 
        
        
          | Kernel Models | 
          87018875 | 
        
        
          | Kernel Test Data | 
          12 | 
        
        
          | kernel_sub | 
          23197721 | 
        
        
          | kernel-data | 
          1056173 | 
        
        
          | kevinbacon | 
          4018 | 
        
        
          | Keystroke Dynamics | 
          4581148 | 
        
        
          | kfoldstacking | 
          1778291 | 
        
        
          | kickstarter | 
          4388554 | 
        
        
          | Kickstarter Project Statistics | 
          3076541 | 
        
        
          | Kickstarter projects | 
          38478412 | 
        
        
          | Kickstarter videogames released on Steam | 
          987928 | 
        
        
          | Kimmo Corpus | 
          814609 | 
        
        
          | kinetic | 
          9078992 | 
        
        
          | Kinetic features | 
          150464078 | 
        
        
          | kinetic-and-transforms | 
          4340364 | 
        
        
          | kineticc | 
          22697365 | 
        
        
          | kinetics | 
          13618373 | 
        
        
          | KinfaceW | 
          8024652 | 
        
        
          | King County House Data | 
          1565996 | 
        
        
          | King County House Data prices vs price_estimates | 
          511485 | 
        
        
          | King county house sales - split dataset | 
          2360461 | 
        
        
          | KingBase2017Lite1 | 
          1497831 | 
        
        
          | KingCountyHousePrices | 
          586129 | 
        
        
          | kiran_bank | 
          687440 | 
        
        
          | kiran_loans | 
          751049 | 
        
        
          | kiran101995_bank | 
          616303 | 
        
        
          | Kite Sessions | 
          2249698 | 
        
        
          | Kitesurf Session Data | 
          257732 | 
        
        
          | KKBOX churn scala label | 
          59568416 | 
        
        
          | kkbox_personal_file | 
          966356656 | 
        
        
          | KKBOX_Submission | 
          7756334 | 
        
        
          | kkbox-churn-prediction-challenge | 
          251716420 | 
        
        
          | kkbox-dataset | 
          2367864146 | 
        
        
          | kkbox-dataset | 
          2367864146 | 
        
        
          | kkbox-songs-fixed-quotes | 
          141341478 | 
        
        
          | kkboxmusic | 
          1754378940 | 
        
        
          | kkboxmusic | 
          1754378940 | 
        
        
          | kkkkkk | 
          188217222 | 
        
        
          | KKKKKKK | 
          855780 | 
        
        
          | KLCC Parking | 
          200862 | 
        
        
          | kljkllkjlkjkl | 
          2327 | 
        
        
          | km12west | 
          90336566 | 
        
        
          | Kmeans | 
          70124 | 
        
        
          | KNB Corpus | 
          8764971 | 
        
        
          | Knight Hack Data 2017 Test | 
          3027284 | 
        
        
          | KNN DATA | 
          7953540 | 
        
        
          | knn price predict for test | 
          4943388 | 
        
        
          | knn price predict for test v2 | 
          4943424 | 
        
        
          | KNN project data | 
          186020 | 
        
        
          | knn_data | 
          1227569 | 
        
        
          | KNN_Project_Data | 
          186020 | 
        
        
          | knn_support | 
          13244266 | 
        
        
          | KNYC Metars 2016 | 
          713492 | 
        
        
          | kobebryant | 
          725655 | 
        
        
          | kodutöö | 
          328619 | 
        
        
          | Kodutöö Sissejuhatus erialasse | 
          378368 | 
        
        
          | koko-test | 
          1310236 | 
        
        
          | KokoSamples | 
          531 | 
        
        
          | Koolid | 
          6553 | 
        
        
          | Koolide eksamitulemuste keskmiste võrdlus | 
          20549 | 
        
        
          | Koppen-Geiger climate classification | 
          777566 | 
        
        
          | Korea Horse Racing | 
          38747408 | 
        
        
          | Korean War Bombing Runs | 
          4018180 | 
        
        
          | Korean_won vs US_Dollar exchange rate | 
          90308 | 
        
        
          | KOS bag of words data | 
          4075212 | 
        
        
          | kos_isa | 
          5080028 | 
        
        
          | Kospi Stock Price | 
          162741302 | 
        
        
          | Kraken recent trades | 
          29216 | 
        
        
          | KRAKENUSD-bitcoin | 
          116302 | 
        
        
          | Kung Fu Panda | 
          171770 | 
        
        
          | Kuttaandb | 
          431780918 | 
        
        
          | kuyglulh | 
          13788274 | 
        
        
          | kv2015notext | 
          31974824 | 
        
        
          | Kwici Welsh Wikipedia Corpus | 
          27161842 | 
        
        
          | kyphosis | 
          1430 | 
        
        
          | Kyphosis Dataset | 
          1430 | 
        
        
          | kyukiabhi | 
          5020428 | 
        
        
          | L_AIRPORT | 
          283530 | 
        
        
          | L_AIRPORT_ID | 
          295598 | 
        
        
          | LA International Airport Monthly Flight Operations | 
          122576 | 
        
        
          | LA Vacant Building Complaints | 
          21300669 | 
        
        
          | laaaaa | 
          4044933 | 
        
        
          | Lab 1 Matrix | 
          18 | 
        
        
          | lab_favorita | 
          102706970 | 
        
        
          | labdata1 | 
          1340922 | 
        
        
          | labdata2 | 
          827898 | 
        
        
          | labeled_properties | 
          14791448 | 
        
        
          | labeled_properties | 
          16977714 | 
        
        
          | labeledTrainData | 
          13788274 | 
        
        
          | Labelled tweets about Trump | 
          2919113 | 
        
        
          | LabelMe - Let's Eat! Labeled images of meals | 
          1947585 | 
        
        
          | labels | 
          14409602 | 
        
        
          | labels.csv | 
          9544 | 
        
        
          | ladu1234 | 
          427836 | 
        
        
          | Lahman Baseball Database | 
          11766307 | 
        
        
          | Lahman MLB | 
          30809107 | 
        
        
          | lalthan | 
          23786298 | 
        
        
          | Landslides After Rainfall, 2007-2016 | 
          441762 | 
        
        
          | Langevarjur | 
          6920518 | 
        
        
          | Language Detection | 
          16277296 | 
        
        
          | Language translation dataset | 
          10664511 | 
        
        
          | laonprediction | 
          38013 | 
        
        
          | LapMob | 
          1189300 | 
        
        
          | Large Purchases by the State of CA | 
          163512353 | 
        
        
          | Largest Dog Breed Dataset | 
          27085723 | 
        
        
          | Las Vegas TripAdvisor Reviews | 
          60079 | 
        
        
          | last one | 
          206347 | 
        
        
          | Last Words of Death Row Inmates | 
          475124 | 
        
        
          | Last Year Sales 2 | 
          41093618 | 
        
        
          | last_year_sales | 
          9914219 | 
        
        
          | Latest IMDB | 
          108584 | 
        
        
          | LB - web traffic timeseries forecasting | 
          96945 | 
        
        
          | LB 0.1400 | 
          206347 | 
        
        
          | Lb0.14 | 
          206347 | 
        
        
          | LB0.1400 | 
          206347 | 
        
        
          | lbg_favorita | 
          17091236 | 
        
        
          | LBMA Gold Price (1968-2017) | 
          580883 | 
        
        
          | LCDS Data | 
          10032349 | 
        
        
          | LCDS Data 2 | 
          475059771 | 
        
        
          | LCS 2017 Summer Split Fantasy Player & Team Stats | 
          121125 | 
        
        
          | lda-toy-data | 
          2011723 | 
        
        
          | Le thé est-il bon pour la santé ? | 
          32926 | 
        
        
          | Lead legs on chipset | 
          2080100 | 
        
        
          | Leading Causes of Death in the USA | 
          1138273 | 
        
        
          | Leads Dataset | 
          5924557 | 
        
        
          | league | 
          23359 | 
        
        
          | League of Legends | 
          29455386 | 
        
        
          | League of Legends MatchID dataset V2.0 | 
          2684573 | 
        
        
          | League of Legends Ranked Matches | 
          729424058 | 
        
        
          | League of Legends Summoner Ids and Data - 2016 | 
          116810146 | 
        
        
          | learn with fun | 
          244993 | 
        
        
          | LEARN_ | 
          16588552 | 
        
        
          | Learning ML | 
          698383 | 
        
        
          | Learning Pandas Coookboook | 
          33838501 | 
        
        
          | LearningClassification-ANN | 
          684858 | 
        
        
          | learnJupyterDS | 
          328384 | 
        
        
          | Lego Colors | 
          1912 | 
        
        
          | LEGO Database | 
          12986014 | 
        
        
          | leileizhang | 
          7974714 | 
        
        
          | Lending Club Loan Data | 
          441771600 | 
        
        
          | Lending Club Loan Data | 
          957262931 | 
        
        
          | Lending_Loan | 
          561036 | 
        
        
          | lerproject_3 | 
          18167 | 
        
        
          | Let's Try this again | 
          195997 | 
        
        
          | letsgo | 
          949847 | 
        
        
          | letter_images | 
          16132257 | 
        
        
          | Letters ABPR | 
          120069 | 
        
        
          | LGA_SEN_Districts | 
          65536 | 
        
        
          | lga_sen_districts_dataset | 
          24983 | 
        
        
          | Lgb Esemble + Xgb LB 0.285 | 
          13618373 | 
        
        
          | lgb_favorita | 
          17091236 | 
        
        
          | lgb_ridge | 
          7974853 | 
        
        
          | lgb_ridge_mod | 
          7975548 | 
        
        
          | lgb_support | 
          17099319 | 
        
        
          | lgb_train | 
          897625746 | 
        
        
          | lgb_wordbag | 
          6334876 | 
        
        
          | lgb-21-10 | 
          16751178 | 
        
        
          | lgb-m8 | 
          16757691 | 
        
        
          | lgb000 | 
          16748807 | 
        
        
          | lgb074 | 
          17067737 | 
        
        
          | lgb512 | 
          17106400 | 
        
        
          | lgb515 | 
          17091236 | 
        
        
          | lgbm baseline | 
          7978666 | 
        
        
          | LGBM_output | 
          16600712 | 
        
        
          | lgbm-2-way | 
          8563689 | 
        
        
          | LGBM.csv | 
          10333691 | 
        
        
          | lgbm14_bb | 
          17098494 | 
        
        
          | Lgbmodel | 
          17062528 | 
        
        
          | lgbmodel____ | 
          7976448 | 
        
        
          | LGBMs_support | 
          415776 | 
        
        
          | LGBpred | 
          17091236 | 
        
        
          | LGBpred | 
          15108438 | 
        
        
          | liana-test-hthon | 
          2274298 | 
        
        
          | libftrl-python | 
          8277 | 
        
        
          | libftrl-python | 
          23813 | 
        
        
          | libraries | 
          100739 | 
        
        
          | Libraries | 
          16565 | 
        
        
          | library | 
          8277 | 
        
        
          | Library of Southern Literature | 
          48682607 | 
        
        
          | Licensed Premises in Bristol | 
          1856745 | 
        
        
          | Life Level | 
          54805 | 
        
        
          | lifeexpectancy | 
          82097 | 
        
        
          | lightgbm | 
          7976287 | 
        
        
          | lilwayne | 
          354 | 
        
        
          | lilwayne | 
          354 | 
        
        
          | Lin Thesaurus | 
          210421609 | 
        
        
          | Linear regression | 
          726209 | 
        
        
          | Linear Regression | 
          14845 | 
        
        
          | Linear Regression Dataset | 
          14823 | 
        
        
          | LinearRegression | 
          572865 | 
        
        
          | linearregressionML | 
          572865 | 
        
        
          | LinkedIn Profile Data | 
          5617925 | 
        
        
          | Linux Gamers Survey, Q1 2016 | 
          876916 | 
        
        
          | Linux Kernel Git Revision History | 
          208910758 | 
        
        
          | Linux Kernel Mailing List archive | 
          247086243 | 
        
        
          | Linux Operating System Code Commits | 
          1069875 | 
        
        
          | lip-data | 
          1654362 | 
        
        
          | Liquid foam | 
          364716846 | 
        
        
          | Liquid foam dkCF | 
          133246855 | 
        
        
          | list of ALL countries ISO codes | 
          4515 | 
        
        
          | List of Drake Lyrics | 
          993849 | 
        
        
          | List of Python 3.1 reserved words (json) | 
          1774 | 
        
        
          | list of subway stops | 
          239604 | 
        
        
          | List of words included in GloVe  | 
          30113706 | 
        
        
          | Listing Price City | 
          1055830 | 
        
        
          | Lithogeochemistry Leinster Belt | 
          74629 | 
        
        
          | Lithuanian parliament votes | 
          29787076 | 
        
        
          | Liver data | 
          23346 | 
        
        
          | Liver Data Set | 
          23857 | 
        
        
          | Liver_patient | 
          23857 | 
        
        
          | lkjbkjh | 
          72474 | 
        
        
          | lkmlEmailsReduced.txt | 
          49066 | 
        
        
          | ll_testcase | 
          10097903 | 
        
        
          | load_data | 
          751253 | 
        
        
          | Load_Forecasting | 
          131375485 | 
        
        
          | LoadDS | 
          154483 | 
        
        
          | loadPrediction | 
          59970 | 
        
        
          | Loan Data | 
          44417 | 
        
        
          | Loan data | 
          393075031 | 
        
        
          | Loan data sampled | 
          1097196 | 
        
        
          | Loan information - Test | 
          22054 | 
        
        
          | Loan information - Train | 
          51161 | 
        
        
          | Loan information - Train | 
          51161 | 
        
        
          | Loan prediction | 
          34345 | 
        
        
          | Loan Status | 
          32140 | 
        
        
          | Loan_Default_Prediction | 
          214737859 | 
        
        
          | Loan_Forecast | 
          131375485 | 
        
        
          | LoanData | 
          154483 | 
        
        
          | loandata | 
          441771600 | 
        
        
          | loandata | 
          441771600 | 
        
        
          | LoanDS123 | 
          154483 | 
        
        
          | LoanPrediction | 
          59970 | 
        
        
          | loanprediction1 | 
          21957 | 
        
        
          | LoanPredictionIII_AV | 
          89823 | 
        
        
          | Loans data | 
          751253 | 
        
        
          | Localization Data for Posture Reconstruction | 
          21548954 | 
        
        
          | location filtered | 
          142957 | 
        
        
          | login time for users | 
          141436 | 
        
        
          | Logistic on Seguro's problem | 
          108304724 | 
        
        
          | Logistic Regression | 
          10926 | 
        
        
          | logistic_regr | 
          14175083 | 
        
        
          | LogsSys | 
          2837348 | 
        
        
          | Lokalisering helsebygg Stavanger | 
          872 | 
        
        
          | LOL_heros | 
          14744975 | 
        
        
          | (LoL) League of Legends Ranked Games | 
          9348028 | 
        
        
          | london | 
          4871 | 
        
        
          | London Borough Demographics | 
          23424 | 
        
        
          | London Crime Data, 2008-2016 | 
          932802830 | 
        
        
          | London Fire Brigade Calls | 
          11567174 | 
        
        
          | London Fire Brigade Records | 
          15342016 | 
        
        
          | London Police Records | 
          1206275034 | 
        
        
          | london sklearn  | 
          3385695 | 
        
        
          | London-based restaurants' reviews on TripAdvisor | 
          15845006 | 
        
        
          | LonelyDataset | 
          2064 | 
        
        
          | Long term insurance in Japan | 
          4218368 | 
        
        
          | long_data_form_climate | 
          405157 | 
        
        
          | Lookup Table of UK Local Government Areas | 
          1691102 | 
        
        
          | Lord Of The Rings Data | 
          1031794 | 
        
        
          | Los Angeles Crime Data, 2012 to 2016 | 
          193225451 | 
        
        
          | Los Angeles Weather During 2014 | 
          3305 | 
        
        
          | Lots of code | 
          8295095247 | 
        
        
          | low_resolution | 
          772245 | 
        
        
          | Lower Back Pain Symptoms Dataset | 
          42534 | 
        
        
          | Lower Back Pain Symptoms Dataset(labelled) | 
          41805 | 
        
        
          | lowprobs | 
          865188 | 
        
        
          | lr porto | 
          10127349 | 
        
        
          | LSTM Att Glove | 
          14439648 | 
        
        
          | lstm model w/ weight | 
          213952414 | 
        
        
          | lstm_support | 
          16689700 | 
        
        
          | lstmdata | 
          17111063 | 
        
        
          | lstmlstmlstm | 
          17111063 | 
        
        
          | lstmsub | 
          14636290 | 
        
        
          | LT support | 
          283370 | 
        
        
          | lt2_support | 
          283218 | 
        
        
          | lucas1 | 
          1810753 | 
        
        
          | lucas2 | 
          1810753 | 
        
        
          | Lucifer <3 H3LL | 
          96431 | 
        
        
          | Lunar Daily Distance and Declination : 1800-2020 | 
          4238568 | 
        
        
          | Lung Cancer 40x100x100 | 
          311945617 | 
        
        
          | Lung Nodule Malignancy | 
          175233019 | 
        
        
          | Luxury Hotel in Dalhousie - Hotel Blue Magnets | 
          123011 | 
        
        
          | Lynda-DeeplearningSales | 
          43012 | 
        
        
          | lyrics from web | 
          144088 | 
        
        
          | m 50 startups | 
          2436 | 
        
        
          | M&M Stock | 
          9771 | 
        
        
          | m1 50 Startups | 
          2436 | 
        
        
          | M1-0101-1000-5-65 | 
          42274638 | 
        
        
          | M3-01022018-test | 
          7335108 | 
        
        
          | ma_avg | 
          16746510 | 
        
        
          | ma8888 | 
          15160354 | 
        
        
          | ma8dwof | 
          13297050 | 
        
        
          | Maakondade statistika | 
          1218 | 
        
        
          | Maakonnad | 
          9744 | 
        
        
          | Maakonnad0 | 
          533 | 
        
        
          | Maakonnad1 | 
          644 | 
        
        
          | Mac Morpho | 
          10941402 | 
        
        
          | Macbeth | 
          103603 | 
        
        
          | Machado | 
          5380736 | 
        
        
          | Machine Learning | Coursera | 
          2016 | 
        
        
          | Machine Learning Awards | 
          54142 | 
        
        
          | machine learning exercise | 
          2296105 | 
        
        
          | machine_labeled_test | 
          130417 | 
        
        
          | machine_learning | 
          699146 | 
        
        
          | machinelearning | 
          29309 | 
        
        
          | macroeconomic | 
          22296375 | 
        
        
          | Madison Lakes Ice Cover | 
          6372 | 
        
        
          | Magic The Gathering Cards | 
          55272813 | 
        
        
          | Mahabharata | 
          1706482 | 
        
        
          | Mahesh Baseline | 
          7272271 | 
        
        
          | MaheshTiv2b | 
          7272271 | 
        
        
          | MaheshTiv2Nov22 | 
          7272271 | 
        
        
          | Mail.csv | 
          4286 | 
        
        
          | mailssms | 
          290889 | 
        
        
          | Maintenance of Naval Propulsion Plants Data Set | 
          3448926 | 
        
        
          | malabel | 
          106871 | 
        
        
          | Malarial Mosquito Database | 
          6703724 | 
        
        
          | Malaysian States and CIty Coordinates | 
          35083 | 
        
        
          | Malicious and Benign Websites | 
          273704 | 
        
        
          | Malicious_n_Non-Malicious URL | 
          6927806 | 
        
        
          | Malimg Dataset | 
          7755857 | 
        
        
          | Mall_customer | 
          4286 | 
        
        
          | Mall_Customers | 
          4286 | 
        
        
          | Mammogram | 
          16855 | 
        
        
          | Mammographic Mass Data Set | 
          11662 | 
        
        
          | mangutabel | 
          570318 | 
        
        
          | Manhattan neighborhood coordinates | 
          3474 | 
        
        
          | Manhattan or Not? | 
          196665674 | 
        
        
          | Mann Ki Baat Speech corpus | 
          771276 | 
        
        
          | Mannanafnaskrá | 
          37347 | 
        
        
          | Mapping the KKK 1921-1940 | 
          310811 | 
        
        
          | Marathon time Predictions | 
          5664 | 
        
        
          | Marcel Train | 
          590919 | 
        
        
          | March Madness Forecasts - Men & Women's | 
          19290 | 
        
        
          | Marginal Revolution Blog Post Data | 
          16261809 | 
        
        
          | Market data from 2001 - U.S. Stock market | 
          119428914 | 
        
        
          | Market Segmentation | 
          260905 | 
        
        
          | marketing | 
          554657 | 
        
        
          | marketing2 | 
          554657 | 
        
        
          | markov chain dataset | 
          19237769 | 
        
        
          | Marvel Characters and Universes | 
          298695461 | 
        
        
          | MASC Corpus | 
          4963879 | 
        
        
          | masoodtest | 
          432 | 
        
        
          | Mass shootings | 
          224999 | 
        
        
          | mass_case_description_train_set.csv | 
          772727 | 
        
        
          | Massachusetts Public Schools Data | 
          1635625 | 
        
        
          | Master's Degrees Programs (mastersportal.eu) | 
          129834329 | 
        
        
          | Match Statistics from top 5 European Leagues | 
          6501476 | 
        
        
          | Math Students | 
          41983 | 
        
        
          | mathDataSet | 
          273 | 
        
        
          | Mathematicians of Wikipedia | 
          10930286 | 
        
        
          | MathUKNow | 
          815 | 
        
        
          | matrix | 
          18 | 
        
        
          | Matrix | 
          18 | 
        
        
          | matrix | 
          18 | 
        
        
          | Matrix | 
          18 | 
        
        
          | matrix | 
          18 | 
        
        
          | matrix | 
          18 | 
        
        
          | matrix | 
          18 | 
        
        
          | Matrix | 
          18 | 
        
        
          | matrix | 
          21 | 
        
        
          | matrix | 
          18 | 
        
        
          | matrix | 
          18 | 
        
        
          | Matrix | 
          68058836 | 
        
        
          | Matrix  | 
          18 | 
        
        
          | matrix 1  | 
          18 | 
        
        
          | Matrix Lab 1 | 
          18 | 
        
        
          | Matrix Problem | 
          19 | 
        
        
          | matrix.csv | 
          18 | 
        
        
          | matrix1 | 
          18 | 
        
        
          | matrix2 | 
          29 | 
        
        
          | MaxEnt NE Chunker | 
          23604982 | 
        
        
          | MaxEnt Treebank POS Tagger | 
          17961132 | 
        
        
          | May 2015 Reddit Comments | 
          NA | 
        
        
          | mbti pic | 
          82550 | 
        
        
          | mbti_processed | 
          25692185 | 
        
        
          | (MBTI) Myers-Briggs Personality Type Dataset | 
          62856486 | 
        
        
          | mc data | 
          2188 | 
        
        
          | McDonaldsLocations | 
          676116 | 
        
        
          | McK-test | 
          700124 | 
        
        
          | me_vec | 
          67184487 | 
        
        
          | mean by itemnbr | 
          70997 | 
        
        
          | mean_values | 
          8570620 | 
        
        
          | mean)stack | 
          4986571 | 
        
        
          | Measuring Customer Happiness | 
          63004455 | 
        
        
          | mecaensz007 | 
          37834097 | 
        
        
          | Mecari 4 | 
          23928058 | 
        
        
          | Mecari 5 | 
          31186148 | 
        
        
          | Mecari 6 | 
          22463627 | 
        
        
          | Mecari 7 | 
          39883022 | 
        
        
          | Mecari 8 | 
          15953814 | 
        
        
          | Mecari Mix 2 | 
          23924098 | 
        
        
          | Mecari third round | 
          23924202 | 
        
        
          | mecariAnalysis | 
          64749750 | 
        
        
          | Median age by country since 1950 | 
          16464 | 
        
        
          | Median Listing Price (1 Bedroom) | 
          52565 | 
        
        
          | Median Rank Submission | 
          22539419 | 
        
        
          | median_ma | 
          54156686 | 
        
        
          | median_ma8.csv | 
          54154718 | 
        
        
          | medical | 
          1701375 | 
        
        
          | Medical Appointment | 
          550394 | 
        
        
          | Medical Appointment No Shows | 
          10739535 | 
        
        
          | Medical Data | 
          208048 | 
        
        
          | Medical No show dataset | 
          10850022 | 
        
        
          | medical1 | 
          1631386 | 
        
        
          | medical2 | 
          341641 | 
        
        
          | medical3 | 
          300647 | 
        
        
          | medical31 | 
          275327 | 
        
        
          | medical34 | 
          300643 | 
        
        
          | medical5 | 
          300951 | 
        
        
          | medical54 | 
          275331 | 
        
        
          | Medicare's Doctor Comparison Scores | 
          722514467 | 
        
        
          | MEDLINE and MeSH | 
          3775910009 | 
        
        
          | Meet the Geeks competition's dataset | 
          13420462 | 
        
        
          | Meetups data from meetup.com | 
          207078701 | 
        
        
          | Mega sena | 
          42419 | 
        
        
          | Megasena | 
          85440 | 
        
        
          | Melbourne housing | 
          773120 | 
        
        
          | Melbourne Housing Market | 
          933634 | 
        
        
          | Melbourne Housing Snapshot | 
          2780441 | 
        
        
          | melbourne train dataset | 
          460676 | 
        
        
          | Member Info | 
          416123732 | 
        
        
          | Member States of the European Union | 
          3850 | 
        
        
          | members | 
          216174388 | 
        
        
          | members | 
          216174388 | 
        
        
          | members | 
          216174388 | 
        
        
          | members | 
          216174388 | 
        
        
          | members | 
          1462998 | 
        
        
          | members_old | 
          195274540 | 
        
        
          | Men's Professional Basketball | 
          7113414 | 
        
        
          | Meneame.net front page news | 
          44048190 | 
        
        
          | Mental Health Centers Around USA | 
          2041859 | 
        
        
          | Mental Health in Tech Survey | 
          303684 | 
        
        
          | mentalhealth | 
          47244 | 
        
        
          | mer_price | 
          198373006 | 
        
        
          | merahai bhai  | 
          247074 | 
        
        
          | mercai test sujith | 
          61772212 | 
        
        
          | mercari | 
          196737128 | 
        
        
          | Mercari | 
          1325766866 | 
        
        
          | mercari | 
          196737128 | 
        
        
          | mercari | 
          9806167 | 
        
        
          | mercari | 
          196737128 | 
        
        
          | Mercari | 
          61772212 | 
        
        
          | Mercari | 
          77912192 | 
        
        
          | mercari | 
          6974622 | 
        
        
          | mercari | 
          1635878 | 
        
        
          | Mercari | 
          113703433 | 
        
        
          | Mercari | 
          196737128 | 
        
        
          | Mercari Brands List | 
          428025 | 
        
        
          | Mercari Category Average | 
          2442386 | 
        
        
          | Mercari Competition | 
          198373006 | 
        
        
          | Mercari Data | 
          196737128 | 
        
        
          | Mercari External Data | 
          645128 | 
        
        
          | Mercari FastText Vectors - 64 | 
          41174459 | 
        
        
          | Mercari fasttext vectors 64 v2 | 
          13997930 | 
        
        
          | mercari glove submission | 
          6325841 | 
        
        
          | Mercari non-kernel submission | 
          4892686 | 
        
        
          | mercari preds | 
          7368468 | 
        
        
          | Mercari Price Suggestion Challenge | 
          196737128 | 
        
        
          | Mercari Price Suggestion Challenge | 
          7309593 | 
        
        
          | Mercari Price Suggestion Challenge 12122017_1 | 
          198373006 | 
        
        
          | Mercari Season1 | 
          196737128 | 
        
        
          | Mercari Solution | 
          22102165 | 
        
        
          | Mercari Test Predictions #1 | 
          7298284 | 
        
        
          | Mercari train set | 
          134964916 | 
        
        
          | mercari unzip | 
          198373006 | 
        
        
          | mercari wordbatch | 
          2243245 | 
        
        
          | mercari_002 | 
          8071105 | 
        
        
          | mercari_003 | 
          8027291 | 
        
        
          | mercari_01 | 
          2378970 | 
        
        
          | mercari_180115_01 | 
          8027291 | 
        
        
          | mercari_180115_02 | 
          8028089 | 
        
        
          | mercari_baseline_12-05-2017 | 
          7975801 | 
        
        
          | mercari_compe | 
          196737128 | 
        
        
          | mercari_data | 
          196737128 | 
        
        
          | Mercari_dataset_lightgbm_ridge_tfidf | 
          409785869 | 
        
        
          | Mercari_decompressed | 
          196737128 | 
        
        
          | mercari_input | 
          196737128 | 
        
        
          | Mercari_lightgbm_ridge_tfidf2 | 
          417410092 | 
        
        
          | Mercari_meta | 
          16084104 | 
        
        
          | Mercari_Meta_G | 
          1606701 | 
        
        
          | mercari_predice3 | 
          2378954 | 
        
        
          | mercari_predict | 
          2623673 | 
        
        
          | mercari_predict_01 | 
          2378970 | 
        
        
          | mercari_predict_02 | 
          2378970 | 
        
        
          | mercari_predict2 | 
          2623688 | 
        
        
          | mercari_predict3 | 
          2378954 | 
        
        
          | Mercari_stack_mean | 
          4986571 | 
        
        
          | Mercari_Stage1 | 
          198373006 | 
        
        
          | mercari_submission_1 | 
          2507426 | 
        
        
          | mercari_submission_1.csv | 
          2507426 | 
        
        
          | mercari_submit | 
          5293898 | 
        
        
          | mercari_submit_02 | 
          4957944 | 
        
        
          | mercari_submit_03 | 
          4965087 | 
        
        
          | mercari_submit_04 | 
          7381247 | 
        
        
          | mercari_submit_04.csv | 
          7314130 | 
        
        
          | mercari_submit.csv | 
          5293898 | 
        
        
          | mercari_sujith_glove | 
          6325841 | 
        
        
          | Mercari_test_180110_01.csv | 
          8062402 | 
        
        
          | mercari_train | 
          134964916 | 
        
        
          | mercari_try004-01 | 
          7381247 | 
        
        
          | mercari_try004-02 | 
          7345443 | 
        
        
          | mercari_try005_01 | 
          7295140 | 
        
        
          | mercari_ykamikawa | 
          7975572 | 
        
        
          | mercari-datasets | 
          196737128 | 
        
        
          | mercari-mark1 | 
          4070207 | 
        
        
          | mercari-price | 
          65025931 | 
        
        
          | Mercari-project | 
          9307598 | 
        
        
          | Mercari-sparse-merge | 
          754494419 | 
        
        
          | mercari-submission-1 | 
          4899922 | 
        
        
          | mercari-train | 
          136600794 | 
        
        
          | mercari-user-result | 
          15947642 | 
        
        
          | mercariData | 
          61772212 | 
        
        
          | MercariExtracted | 
          134964916 | 
        
        
          | mercarinn | 
          6325785 | 
        
        
          | mercarinn1 | 
          6325785 | 
        
        
          | mercaris | 
          218443775 | 
        
        
          | mercarisubmitnn | 
          6325785 | 
        
        
          | mercarisubnn | 
          6325785 | 
        
        
          | mercarisujith | 
          6325785 | 
        
        
          | mercarisujithnn | 
          6325785 | 
        
        
          | MercariTest | 
          196737128 | 
        
        
          | MercariTrainedDataB | 
          645128 | 
        
        
          | MercariTrainSet | 
          134964916 | 
        
        
          | mercariutils | 
          902 | 
        
        
          | Mercedes Benz car sales data | 
          580 | 
        
        
          | Mercedes Benz Us car sales data 06/May - 09/March | 
          2694 | 
        
        
          | Mercedes-Benz Competition Leaderboard Shakeup | 
          40765262 | 
        
        
          | Mercedes-Benz Greener Manufacturing | 
          6415134 | 
        
        
          | merci_sub1 | 
          18201482 | 
        
        
          | merci12102017 | 
          9976011 | 
        
        
          | mercombine1 | 
          16770297 | 
        
        
          | Mercuri | 
          134964916 | 
        
        
          | mercury | 
          3835650 | 
        
        
          | Mercury_Ensemble | 
          37701897 | 
        
        
          | Merge-Properati | 
          257088756 | 
        
        
          | Merged  | 
          46718 | 
        
        
          | merged data | 
          103053703 | 
        
        
          | merged data sets | 
          117468967 | 
        
        
          | merged-data1 | 
          101699990 | 
        
        
          | merkari | 
          21706647 | 
        
        
          | merucari_datasets | 
          300639131 | 
        
        
          | MESSI goals vs Real Madrid 2005-2017 | 
          1429 | 
        
        
          | Messi vs Ronaldo vs Neymar | 
          1065 | 
        
        
          | Meta Kaggle | 
          2206589497 | 
        
        
          | metadata | 
          6600 | 
        
        
          | Metal Banda by Nation | 
          240271 | 
        
        
          | Metal Bands by Nation | 
          389612 | 
        
        
          | Meteorite Landings | 
          4206156 | 
        
        
          | Meteorite Landings in 1900's | 
          1215963 | 
        
        
          | MIAS Mammography | 
          216233808 | 
        
        
          | michelson | 
          1375 | 
        
        
          | Micro-Loans | 
          1319764 | 
        
        
          | Microdados Censo Escolar 2015 | 
          96890872 | 
        
        
          | Microdados Enem 2014 | 
          1200276946 | 
        
        
          | Microsoft Capstone | 
          37254929 | 
        
        
          | Midas Project | 
          775131 | 
        
        
          | middle | 
          3922688 | 
        
        
          | Miles covered | 
          1498 | 
        
        
          | Miles covered 2 | 
          1251 | 
        
        
          | Miles covered 3 | 
          1248 | 
        
        
          | Miles covered 4 | 
          1248 | 
        
        
          | millenium | 
          184319 | 
        
        
          | Million Song Dataset studies | 
          1609175 | 
        
        
          | Mines vs Rocks | 
          87776 | 
        
        
          | minimized_dot_traffic_2015 | 
          352904 | 
        
        
          | Minneapolis Air Quality Survey | 
          795426 | 
        
        
          | Minneapolis Incidents & Crime | 
          78048883 | 
        
        
          | Missing Migrants Dataset | 
          334006 | 
        
        
          | Missing People | 
          340708 | 
        
        
          | Missing people in Russia | 
          2016747 | 
        
        
          | Mix Mix Mecari | 
          31900368 | 
        
        
          | mixing_result | 
          6788643 | 
        
        
          | mk1-net1 | 
          4070207 | 
        
        
          | mk8888 | 
          15160354 | 
        
        
          | mk88888 | 
          15160354 | 
        
        
          | mktdata | 
          12061734 | 
        
        
          | ml_articles | 
          24901 | 
        
        
          | mlabel | 
          130417 | 
        
        
          | MLB 2017 | 
          391632 | 
        
        
          | MLB 2017 Regular Season Top Hitters | 
          12247 | 
        
        
          | MLB dataset 1870s-2016 | 
          476218 | 
        
        
          | MLB Home Run Exit Velocity: 2015 vs. 2017 | 
          386537 | 
        
        
          | MLB Stats | 
          72825 | 
        
        
          | mlbBat10 | 
          72825 | 
        
        
          | mlbBat10.txt | 
          72825 | 
        
        
          | MLchallenge | 
          2864595697 | 
        
        
          | MLearningScrapped | 
          54039 | 
        
        
          | mljar_ | 
          62414 | 
        
        
          | mljar2 | 
          62689 | 
        
        
          | MLUdemy | 
          684858 | 
        
        
          | MMARTfeb | 
          24327699 | 
        
        
          | mnet 27 | 
          4670617 | 
        
        
          | MNIST as .jpg | 
          18413932 | 
        
        
          | MNIST CSV | 
          9605983 | 
        
        
          | MNIST data | 
          15991536 | 
        
        
          | mnist data | 
          11594722 | 
        
        
          | MNIST data | 
          17051982 | 
        
        
          | MNIST Data for Digit Recognition | 
          11598550 | 
        
        
          | mnist dataset | 
          11493971 | 
        
        
          | MNIST dataset | 
          15991536 | 
        
        
          | MNIST Dataset | 
          15948570 | 
        
        
          | MNIST Digit Recognizer | 
          76775041 | 
        
        
          | MNIST Exdb Lecun Uncompressed1 | 
          9938128 | 
        
        
          | MNIST Exdb Lecun1 | 
          9944478 | 
        
        
          | MNIST FASHION | 
          11594722 | 
        
        
          | MNIST Fashion Test + Train | 
          41054396 | 
        
        
          | MNIST Fashion Train & Test | 
          11592478 | 
        
        
          | MNIST Fashion Train and Test | 
          11592478 | 
        
        
          | mnist for tf | 
          16168813 | 
        
        
          | MNIST From Tensorflow Tutorial | 
          11598550 | 
        
        
          | Mnist Model | 
          17787560 | 
        
        
          | MNIST original | 
          15948570 | 
        
        
          | MNIST Original | 
          18841667 | 
        
        
          | MNIST Simple | 
          16046181 | 
        
        
          | MNIST train and test data | 
          11598550 | 
        
        
          | Mnist_01_11_18 | 
          73700 | 
        
        
          | mnist_6k | 
          11493971 | 
        
        
          | mnist_data | 
          11592478 | 
        
        
          | mnist_dataset | 
          15948570 | 
        
        
          | MNIST_examples | 
          336780 | 
        
        
          | mnist_image | 
          11913 | 
        
        
          | Mnist_model_sl | 
          5981672 | 
        
        
          | MNIST_stdm_2017 | 
          20531112 | 
        
        
          | mnist-data-cnn | 
          11592478 | 
        
        
          | MNIST-Handwritten Digit Recognition Problem | 
          15991536 | 
        
        
          | MNIST-Pytorch | 
          110390848 | 
        
        
          | mnist-submission | 
          212908 | 
        
        
          | MNIST: 60,000 hand written number images | 
          127865437 | 
        
        
          | mnist.pkl | 
          16979733 | 
        
        
          | mnist.pkl.gz | 
          16132257 | 
        
        
          | mnist.pkl.gz | 
          16132257 | 
        
        
          | MNIST.Rdata | 
          23475959 | 
        
        
          | MNIST.Rdata | 
          20499651 | 
        
        
          | Mnist+contamination(private test) | 
          76776148 | 
        
        
          | mnistcuboulder | 
          16168860 | 
        
        
          | mnistd | 
          1654072 | 
        
        
          | mnistdata | 
          11598550 | 
        
        
          | MNISTLalthan | 
          11493971 | 
        
        
          | mnistmodel | 
          15555128 | 
        
        
          | mnistmydata | 
          16132257 | 
        
        
          | Mobile location history of 10/2014 | 
          6149910 | 
        
        
          | Mobile phone activity in a city | 
          1533030064 | 
        
        
          | mobilenet_1_0_128_tf.h5 | 
          17225924 | 
        
        
          | mobilenet_1_0_224_tf.h5 | 
          17225924 | 
        
        
          | mod pnet 10 | 
          4935242 | 
        
        
          | Model Control | 
          13824 | 
        
        
          | model v2 24 | 
          4614238 | 
        
        
          | model v2 32 | 
          4578793 | 
        
        
          | model v2 aug 16 | 
          4735378 | 
        
        
          | model v2 test | 
          4690171 | 
        
        
          | model_checkpoint | 
          47003451 | 
        
        
          | model_preds | 
          25794361 | 
        
        
          | model_weights | 
          14298472 | 
        
        
          | model_weights | 
          4922056 | 
        
        
          | model_weights_010_F_d17 | 
          4051567 | 
        
        
          | model-m11 | 
          16771825 | 
        
        
          | model-m48 | 
          17259353 | 
        
        
          | model1 | 
          1399069 | 
        
        
          | model3 | 
          879356 | 
        
        
          | model3_weights | 
          14717808 | 
        
        
          | ModelFile | 
          144724 | 
        
        
          | modelm14 | 
          16772336 | 
        
        
          | modelm16 | 
          16772965 | 
        
        
          | modelm20 | 
          15160346 | 
        
        
          | modelm32 | 
          17091094 | 
        
        
          | modelm36 | 
          17099303 | 
        
        
          | Models | 
          10720278 | 
        
        
          | models | 
          2814 | 
        
        
          | models | 
          163492396 | 
        
        
          | ModelsPlus | 
          4585079 | 
        
        
          | Modified corn dataset | 
          11979 | 
        
        
          | Modified Data for corporacion favorita grocery  | 
          1762305063 | 
        
        
          | modified pnet 10 | 
          4935242 | 
        
        
          | modified_train.csv | 
          10386 | 
        
        
          | Module fym | 
          326656 | 
        
        
          | Money Supply M2 BRIC economies | 
          23826 | 
        
        
          | Moneyball | 
          67157 | 
        
        
          | Monthly Salary of Public Worker in Brazil | 
          18676853 | 
        
        
          | Monthly Sales | 
          1019 | 
        
        
          | monthy_milk | 
          4390 | 
        
        
          | Montreal bike lanes | 
          31178 | 
        
        
          | Montreal Street Parking | 
          121638070 | 
        
        
          | Monty hall | 
          2584 | 
        
        
          | Monty Python Flying Circus | 
          3944448 | 
        
        
          | Monty Python Flying Circus  | 
          1056462 | 
        
        
          | Monty Python's Flying Circus | 
          1060891 | 
        
        
          | MOOC Dataset | 
          8701582 | 
        
        
          | MOOC Dataset | 
          12488985 | 
        
        
          | MOOC Kaggle dataset | 
          126153 | 
        
        
          | More data beats better algo | 
          562357 | 
        
        
          | More Linear Regression | 
          1586687 | 
        
        
          | More Stacking  | 
          11379395 | 
        
        
          | more_lgbm_2 | 
          7975028 | 
        
        
          | Mortality by Age IHME | 
          2079315 | 
        
        
          | Mortality Projection by Worldwide Health Org. | 
          13019648 | 
        
        
          | Moscow Ring Roads | 
          3629518 | 
        
        
          | Moses Sample | 
          10985045 | 
        
        
          | Most Common Wine Scores | 
          384954 | 
        
        
          | Most Popular Quotes on Goodreads | 
          1527563 | 
        
        
          | Mother Jones Mass Shootings | 
          164520 | 
        
        
          | motionData | 
          19875707 | 
        
        
          | Movebank: Animal Tracking | 
          22288597 | 
        
        
          | Movehub City Rankings | 
          100814 | 
        
        
          | Movement coordination in trawling bats | 
          14194970 | 
        
        
          | Movie Data | 
          27246093 | 
        
        
          | Movie Dataset | 
          760318 | 
        
        
          | Movie Dataset | 
          1494688 | 
        
        
          | Movie Dialog Corpus | 
          30116727 | 
        
        
          | Movie dialogue corpus part1 | 
          2834799 | 
        
        
          | Movie dialogue corpus part2 | 
          2969008 | 
        
        
          | Movie Dialogue Segment Extraction | 
          4056 | 
        
        
          | Movie Genre from Its Poster | 
          26789506 | 
        
        
          | movie id title | 
          49292 | 
        
        
          | Movie Industry | 
          976097 | 
        
        
          | movie lens | 
          34849899 | 
        
        
          | Movie lens | 
          236356 | 
        
        
          | Movie Lens dataset | 
          5315716 | 
        
        
          | Movie Ratings | 
          21781 | 
        
        
          | Movie Review | 
          54848164 | 
        
        
          | Movie Review | 
          8481022 | 
        
        
          | Movie Reviews | 
          1843846 | 
        
        
          | Movie Reviews | 
          4009415 | 
        
        
          | Movie reviews IMDB | 
          137881715 | 
        
        
          | movie_lens_dataset | 
          6783244 | 
        
        
          | movie_metadata.csv | 
          567484 | 
        
        
          | movie_rating_data | 
          551445949 | 
        
        
          | Movie_ratings | 
          1041 | 
        
        
          | movie_ratings.json | 
          1228 | 
        
        
          | movie_review extended | 
          80292456 | 
        
        
          | movie_reviews_set | 
          77298342 | 
        
        
          | movie-dialogue-analysis | 
          17901671 | 
        
        
          | movie-sentiment-analysis | 
          55178882 | 
        
        
          | Movie&WorldGDP | 
          1639121 | 
        
        
          | movie5740goodgoodstudy | 
          45742895 | 
        
        
          | movied | 
          13788274 | 
        
        
          | moviedata | 
          6783244 | 
        
        
          | movielens | 
          198702078 | 
        
        
          | MovieLens | 
          42500756 | 
        
        
          | Movielens (Small) | 
          3130294 | 
        
        
          | MovieLens 100K Dataset | 
          16100896 | 
        
        
          | MovieLens 20M Dataset | 
          928454686 | 
        
        
          | MovieLens DataSet | 
          1358614 | 
        
        
          | Movielens DataSet | 
          6316858 | 
        
        
          | MovieLens Dataset | 
          1352932 | 
        
        
          | MovieLens DataSet | 
          2795889 | 
        
        
          | MovieLens_1 | 
          140248124 | 
        
        
          | movielens2 | 
          205067583 | 
        
        
          | moviereviews | 
          13601750 | 
        
        
          | Movies | 
          1659058 | 
        
        
          | moviesIDB | 
          1659058 | 
        
        
          | Moviestart | 
          1659058 | 
        
        
          | Moving Objects from VISTA Survey (MOVIS) | 
          6015047 | 
        
        
          | mpnet 10 | 
          4935242 | 
        
        
          | MPQA Subjectivity Lexicon | 
          662621 | 
        
        
          | mpstest | 
          61965408 | 
        
        
          | mpstrain | 
          135342858 | 
        
        
          | Mr Donald Trump Speeches | 
          13708122 | 
        
        
          | MRI and Alzheimers | 
          50010 | 
        
        
          | MRI and Alzheimers scan by the OASIS project | 
          21720 | 
        
        
          | MSD2017 | 
          22601 | 
        
        
          | MSdata | 
          324594847 | 
        
        
          | mtcars | 
          1700 | 
        
        
          | muftimm : Data Testing | 
          27117975 | 
        
        
          | muftimm : Data Training | 
          6823239 | 
        
        
          | Mujhe Kiyun Nikala | 
          1287689 | 
        
        
          | MULTEXT | 
          122461442 | 
        
        
          | Multilingual word vectors in 78 languages | 
          176671673 | 
        
        
          | MultipleLinearRegression | 
          5656 | 
        
        
          | Multispectral Image Classification | 
          4924096098 | 
        
        
          | Munic docs | 
          410594 | 
        
        
          | Murder Accountability Stats 2016 | 
          16975636 | 
        
        
          | MurderRate | 
          256 | 
        
        
          | MurderRate1 | 
          226 | 
        
        
          | MurderRate2 | 
          226 | 
        
        
          | Murders | 
          1972 | 
        
        
          | Museum of Modern Art Collection | 
          34825107 | 
        
        
          | Museum Reviews Collected from TripAdvisor | 
          10640933 | 
        
        
          | Museums, Aquariums, and Zoos | 
          6817303 | 
        
        
          | Mushroom Classification | 
          374003 | 
        
        
          | MushroomDatafile | 
          374003 | 
        
        
          | Mushrooms  | 
          374003 | 
        
        
          | Mushrooms edibility | 
          374003 | 
        
        
          | Music notes | 
          89874178 | 
        
        
          | music_churn_data | 
          31583974 | 
        
        
          | MusicData | 
          391356 | 
        
        
          | MusicDataset | 
          391381 | 
        
        
          | Mussel Watch | 
          163609059 | 
        
        
          | Mutual Funds | 
          47155186 | 
        
        
          | mvc_graph | 
          2422395 | 
        
        
          | mvt data | 
          7317543 | 
        
        
          | My Chess Games | 
          1920551 | 
        
        
          | My Clash Royale Ladder Battles | 
          167700 | 
        
        
          | My Complete Genome | 
          15683529 | 
        
        
          | My data set (Taxi data set) | 
          312327125 | 
        
        
          | My dataset | 
          15347 | 
        
        
          | My dataset for fun | 
          81 | 
        
        
          | my files | 
          128715521 | 
        
        
          | my first test | 
          4272986 | 
        
        
          | My Kaggle | 
          2043644 | 
        
        
          | My Neta Data 2014 | 
          685332 | 
        
        
          | my plume | 
          271744 | 
        
        
          | my prediction | 
          8946112 | 
        
        
          | My Ridge 1 | 
          8114774 | 
        
        
          | My Settlers of Catan Games | 
          16689 | 
        
        
          | My Test 2 | 
          172104359 | 
        
        
          | My Test 3 | 
          7379191 | 
        
        
          | My trip data | 
          35693290 | 
        
        
          | My Uber Drives | 
          86369 | 
        
        
          | MY work | 
          855780 | 
        
        
          | my_data | 
          4043708 | 
        
        
          | My_first_project | 
          869537 | 
        
        
          | My_Kernels | 
          79575104 | 
        
        
          | my_mnist | 
          54950048 | 
        
        
          | My_model | 
          11256837 | 
        
        
          | my_NY_Taxi | 
          59064305 | 
        
        
          | my_res | 
          10366748 | 
        
        
          | my_sales_prediction | 
          697785 | 
        
        
          | my_solution | 
          3679 | 
        
        
          | my_sub_6 | 
          251018 | 
        
        
          | my_submit | 
          4072663 | 
        
        
          | My_Subs | 
          36545515 | 
        
        
          | My_Temp_dataset | 
          1058278 | 
        
        
          | my_test | 
          3150486 | 
        
        
          | my-data | 
          20103200 | 
        
        
          | my-keras-ff | 
          243159 | 
        
        
          | my-submission | 
          6343729 | 
        
        
          | MyBaseline | 
          5264890 | 
        
        
          | MyCheckins_small | 
          372624 | 
        
        
          | MyChessGames | 
          4738039 | 
        
        
          | myCSAV | 
          344608811 | 
        
        
          | mydata | 
          14524768 | 
        
        
          | Mydata | 
          869537 | 
        
        
          | MyData | 
          568100 | 
        
        
          | mydata | 
          1029225 | 
        
        
          | mydata stuff | 
          61194 | 
        
        
          | mydata_lightgbm_ridge_tfidf | 
          409785821 | 
        
        
          | Mydata1 | 
          869537 | 
        
        
          | Mydata1 | 
          3970605 | 
        
        
          | MyData2 | 
          9426934 | 
        
        
          | Mydata2 | 
          869537 | 
        
        
          | mydatabase | 
          15243828 | 
        
        
          | mydataset | 
          2176225 | 
        
        
          | MYDATASET | 
          852175 | 
        
        
          | Mydataset | 
          724 | 
        
        
          | mydataset | 
          14563117 | 
        
        
          | myDataSet | 
          89 | 
        
        
          | mydatasets | 
          7247319 | 
        
        
          | MyFinal | 
          86439 | 
        
        
          |  myfirst | 
          563388170 | 
        
        
          | MyFirstSubmission | 
          4098 | 
        
        
          | MyGmailData | 
          58013 | 
        
        
          | mymydata | 
          3293153 | 
        
        
          | mynewdata | 
          1810753 | 
        
        
          | myNNep_2_1221 | 
          7284858 | 
        
        
          | myNNep_2_bs_1536_lrI_0.013_lrF_0.009_dr_0.25 | 
          7266601 | 
        
        
          | myNNsubmission | 
          6333357 | 
        
        
          | mypractice | 
          20678541 | 
        
        
          | MyRepublicID Twitter Data | 
          3437834 | 
        
        
          | myRidgeWOzeros | 
          7945772 | 
        
        
          | myself_modules | 
          23968 | 
        
        
          | mysubmission | 
          7341635 | 
        
        
          | mysubmission | 
          7316365 | 
        
        
          | mySubmission | 
          7316365 | 
        
        
          | mysubmissions | 
          6343728 | 
        
        
          | mysubmit | 
          7305775 | 
        
        
          | mysubmit_1221 | 
          7975130 | 
        
        
          | mysubmit_dec | 
          2430798 | 
        
        
          | mysubmit_tanh | 
          7303010 | 
        
        
          | mysubmit2_1221 | 
          7975130 | 
        
        
          | mytest | 
          18162563 | 
        
        
          | mytestdata | 
          23146 | 
        
        
          | mytitle | 
          5993 | 
        
        
          | mytrain | 
          475652919 | 
        
        
          | mytrainingdata | 
          129135359 | 
        
        
          | mywork1ml4 | 
          3150486 | 
        
        
          | myxml1 | 
          3476 | 
        
        
          | n601042018test | 
          328228 | 
        
        
          | naives | 
          4044915 | 
        
        
          | NALCS Summer 2017 All Pro Votes | 
          8675 | 
        
        
          | Name element categories for cereals | 
          5515 | 
        
        
          | Name pronunciations in videos | 
          618 | 
        
        
          | name_feature | 
          1424 | 
        
        
          | Names Corpus | 
          56572 | 
        
        
          | namescores | 
          5739450 | 
        
        
          | Narrativity in Scientific Publishing | 
          11373016 | 
        
        
          | NASA Astronauts, 1959-Present | 
          81593 | 
        
        
          | NASA Facilities | 
          103259 | 
        
        
          | nasa-small | 
          255410 | 
        
        
          | NASCAR Champion History (1949-Present) | 
          3698 | 
        
        
          | NASDAQ financial fundamentals | 
          15738123 | 
        
        
          | nashanatasha | 
          99185 | 
        
        
          | Nashville Housing Data | 
          11267905 | 
        
        
          | National Accounts | 
          35765062 | 
        
        
          | National Basketball Association(NBA) Dataset | 
          89003 | 
        
        
          | National Employment, Hours, and Earnings | 
          1199787183 | 
        
        
          | National Footprint Accounts data set (1961-2013) | 
          13229220 | 
        
        
          | National Health and Nutrition Examination Survey | 
          32554793 | 
        
        
          | National Institute of the Korean Language Corpus | 
          2445134 | 
        
        
          | National Nutrient Database | 
          690056 | 
        
        
          | National Park | 
          3750451 | 
        
        
          | National Pokedéx - Basic | 
          128150 | 
        
        
          | National Wetlands Inventory | 
          83929579 | 
        
        
          | National_Adult_Tobacco_Survey | 
          65128 | 
        
        
          | Nationalities | 
          2073 | 
        
        
          | Natural Earth - Simplified Countries | 
          748067 | 
        
        
          | Natural numbers, up to eleven | 
          24 | 
        
        
          | Natural Rate of Unemployment (Long-Term) | 
          4091 | 
        
        
          | Natural Stories Corpus | 
          32649246 | 
        
        
          | Naughty Kid Regression datasets | 
          3750 | 
        
        
          | Nazi Tweets | 
          60165007 | 
        
        
          | NBA 16-17 regular season shot log | 
          19971572 | 
        
        
          | nba draft | 
          570658 | 
        
        
          | NBA Draft Value | 
          501389 | 
        
        
          | NBA Enhanced Box Score and Standings Stats | 
          5801591 | 
        
        
          | NBA Finals Team Stats | 
          77723 | 
        
        
          | NBA Free Throws | 
          75737800 | 
        
        
          | NBA player info | 
          610740 | 
        
        
          | NBA Players Stats - 2014-2015 | 
          80373 | 
        
        
          | NBA Players stats since 1950 | 
          5398518 | 
        
        
          | NBA Season Records from Every Year | 
          192668 | 
        
        
          | NBA shot logs | 
          16423917 | 
        
        
          | NBA Writer Rank | 
          71198629 | 
        
        
          | NBA_data with bet365(2009-2011) | 
          1988439 | 
        
        
          | NBA_train | 
          86021 | 
        
        
          | NBA14to15 | 
          776166 | 
        
        
          | nba2014to2015 | 
          776166 | 
        
        
          | nbachallenge | 
          8558950 | 
        
        
          | nbacoach | 
          187728227 | 
        
        
          | NBAplayoff | 
          7205768 | 
        
        
          | nbasalariesfull.csv | 
          55624 | 
        
        
          | NBER Macrohistory Database | 
          32333137 | 
        
        
          | Near Earth Asteroids | 
          62605 | 
        
        
          | Near-Earth Comets | 
          25402 | 
        
        
          | Nearest Cities for NYC Taxi Trips | 
          402990020 | 
        
        
          | needed4pytorch | 
          127912256 | 
        
        
          | Neighborhoods in New York | 
          1719637 | 
        
        
          | neo_bagging_1515685296 | 
          4306781 | 
        
        
          | neo4j_property_graph_model | 
          59940 | 
        
        
          | Nepal News Homepages | 
          225 | 
        
        
          | NEPSE index | 
          846 | 
        
        
          | ner_modified_encoding | 
          3319651 | 
        
        
          | Net Migration | 
          7102 | 
        
        
          | Net Neutrality Accountability | 
          73080 | 
        
        
          | net shopping | 
          196737128 | 
        
        
          | Netchecker | 
          3150486 | 
        
        
          | Netflix Prize data | 
          2131753487 | 
        
        
          | network | 
          226358 | 
        
        
          | Network Attacks | 
          29726213 | 
        
        
          | Network Attacks  | 
          18646312 | 
        
        
          | Network Attacks HE | 
          2910198 | 
        
        
          | neural_net | 
          19678572 | 
        
        
          | NeuralNet | 
          7272919 | 
        
        
          | NEW AAPL | 
          614145 | 
        
        
          | New Car Sales in Norway | 
          234699 | 
        
        
          | New CPU Data | 
          9265 | 
        
        
          | new data | 
          139383 | 
        
        
          | New dataset | 
          8081 | 
        
        
          | New Human Index | 
          10302 | 
        
        
          | New Orlean's Slave Sales | 
          4312299 | 
        
        
          | new subway entances | 
          241968 | 
        
        
          | New train set | 
          31424318 | 
        
        
          | New York Citi Bike Trip Duration 2016 | 
          456080177 | 
        
        
          | New York City - 2013 Campaign Contributions | 
          5330287 | 
        
        
          | New York City - Buildings Database | 
          304542181 | 
        
        
          | New York City - Certificates of Occupancy | 
          15009130 | 
        
        
          | New York City - Citywide Payroll Data | 
          414298921 | 
        
        
          | New York City - East River Bicycle Crossings | 
          18446 | 
        
        
          | New York City Bike Share Dataset | 
          132047989 | 
        
        
          | New York City Census Data | 
          2574719 | 
        
        
          | New York City Crimes | 
          265731103 | 
        
        
          | New York City Taxi Trip - Distance Matrix | 
          4776253 | 
        
        
          | New York City Taxi Trip - Hourly Weather Data | 
          1305316 | 
        
        
          | New York City Taxi Trips - Important Roads | 
          457333789 | 
        
        
          | New York City Taxi with OSRM | 
          2046528343 | 
        
        
          | New York City Transport Statistics | 
          342168232 | 
        
        
          | New York City WiFi Hotspots | 
          1031294 | 
        
        
          | New York Hotels | 
          222663 | 
        
        
          | New York Satellite Image | 
          24576531 | 
        
        
          | New York Shapefile | 
          13963510 | 
        
        
          | New York Shapefile 16 | 
          3529738 | 
        
        
          | New York Stock Exchange | 
          105844882 | 
        
        
          | New York Taxi Trip enriched by Mathematica | 
          400048262 | 
        
        
          | New York Traffic Accidents 2016 | 
          26418375 | 
        
        
          | New Zealand Migration | 
          4110616 | 
        
        
          | new_data | 
          7647036 | 
        
        
          | new_data | 
          7636866 | 
        
        
          | new_importance_list | 
          6935 | 
        
        
          | new_main_12 | 
          4180803 | 
        
        
          | new_train | 
          23300840 | 
        
        
          | New_york_Hourly_crime | 
          245405 | 
        
        
          | new-model | 
          11256837 | 
        
        
          | newchurn | 
          669696 | 
        
        
          | NewData | 
          1810753 | 
        
        
          | NewData2 | 
          1810753 | 
        
        
          | NewDataNY | 
          35693290 | 
        
        
          | newdataset | 
          24885 | 
        
        
          | NewDataSet | 
          134964916 | 
        
        
          | newfile | 
          36789058 | 
        
        
          | newnew | 
          9201576 | 
        
        
          | News Aggregator Dataset | 
          102895657 | 
        
        
          | News and Blog Data Crawl | 
          480781845 | 
        
        
          | News Articles | 
          5071129 | 
        
        
          | News Headlines Of India | 
          64919115 | 
        
        
          | News of the Brazilian Newspaper | 
          503611422 | 
        
        
          | NEWS SUMMARY | 
          11896415 | 
        
        
          | news_corpora | 
          29174052 | 
        
        
          | News01 | 
          23668 | 
        
        
          | News02 | 
          9015 | 
        
        
          | NewsCWUR | 
          1212759 | 
        
        
          | Newspaper churn | 
          1902051 | 
        
        
          | Newspaper churn | 
          1359983 | 
        
        
          | Newspaper Endorsements of Presidential Candidates | 
          19444 | 
        
        
          | newsShanghai | 
          440994 | 
        
        
          | NewTest | 
          7250673 | 
        
        
          | NewYork_Hourly_Climate | 
          390943 | 
        
        
          | NFL Arrests | 
          60450 | 
        
        
          | NFL Arrests 2000-2017 | 
          177852 | 
        
        
          | NFL Draft Outcomes | 
          798490 | 
        
        
          | NFL Features | 
          987128 | 
        
        
          | NFL Football Player Stats | 
          34399801 | 
        
        
          | NFL Offensive Gains | 
          712923 | 
        
        
          | NFL Offensive Yards Gained | 
          738550 | 
        
        
          | NFL play-by-play 2016 | 
          10509809 | 
        
        
          | NFL Statistics | 
          97890277 | 
        
        
          | nfl test data | 
          47562 | 
        
        
          | nfl_offense_cleaned_2017to2007 | 
          70284 | 
        
        
          | nfl_pbp_2016 | 
          10509809 | 
        
        
          | NFL_Working | 
          1046501 | 
        
        
          | NFLArrests | 
          177852 | 
        
        
          | NHANES Hypertensive population 2008-2016 | 
          610917 | 
        
        
          | NHL Player Stats 2004 - 2018 | 
          568858 | 
        
        
          | nifty_data | 
          99408 | 
        
        
          | NIFTY50 SHARE MARKET DATA SET INDIA | 
          27821 | 
        
        
          | niftycsv | 
          169482 | 
        
        
          | NiftyDataForTesting | 
          170775 | 
        
        
          | NIH Chest X-rays | 
          45077768961 | 
        
        
          | Nineteenth Century Works On Nepal | 
          3544083 | 
        
        
          | NIPS 2015 Papers | 
          29094860 | 
        
        
          | NIPS 2017: Adversarial Learning Development Set | 
          153340879 | 
        
        
          | NIPS Conference 1987-2015 Word Frequency | 
          928997 | 
        
        
          | NIPS Papers | 
          148549575 | 
        
        
          | NIPS17 Adversarial learning - 1st round results | 
          49523 | 
        
        
          | NIPS17 Adversarial learning - 1st round results | 
          49523 | 
        
        
          | NIPS17 Adversarial learning - 2nd round results | 
          91364 | 
        
        
          | NIPS17 Adversarial learning - 3rd round results | 
          151391 | 
        
        
          | NIPS17 Adversarial learning - Final results | 
          225272 | 
        
        
          | nishant887y | 
          159 | 
        
        
          | nist sd19 10 percent | 
          129926992 | 
        
        
          | nist_sd19_10percent | 
          129926992 | 
        
        
          | NJ Teacher Salaries (2016) | 
          28334467 | 
        
        
          | NJ Transit Train Schedule | 
          3309933 | 
        
        
          | nkm-data1 | 
          1019399 | 
        
        
          | NLP - Topic Modelling | 
          120062315 | 
        
        
          | NLP Data | 
          3295644 | 
        
        
          | NLP Playground | 
          11280053 | 
        
        
          | NLP Shakira | 
          72706 | 
        
        
          | nlp_data | 
          4054789 | 
        
        
          | nlp_data_2 | 
          91162 | 
        
        
          | nlpprac | 
          518731 | 
        
        
          | nltk-movieReviewData | 
          4004848 | 
        
        
          | nltk123 | 
          345755 | 
        
        
          | NN ensemble | 
          14412166 | 
        
        
          | nn keras data | 
          7307405 | 
        
        
          | nn keras data1 | 
          7307405 | 
        
        
          | NN1andRidge1 | 
          15239999 | 
        
        
          | NN3 Competition Datasets | 
          81697 | 
        
        
          | NNDataset | 
          18217466 | 
        
        
          | NNet work | 
          4273725 | 
        
        
          | nnetproto | 
          287859225 | 
        
        
          | nnkeras | 
          8143627 | 
        
        
          | nnsub11 | 
          6025830 | 
        
        
          | NNtest | 
          7266202 | 
        
        
          | No Data Sources | 
          1 | 
        
        
          | No_survivors | 
          3258 | 
        
        
          | No.19 President Vote Result | 
          6207900 | 
        
        
          | No11036 | 
          1365898 | 
        
        
          | NOAA Pipelined Data | 
          64 | 
        
        
          | NOAA_2011_Austin_Weather | 
          236091 | 
        
        
          | Nobel Laureates, 1901-Present | 
          289963 | 
        
        
          | Nomad GP | 
          25348 | 
        
        
          | Nomad lgbm 1 | 
          25323 | 
        
        
          | NOMADv2 | 
          1009807 | 
        
        
          | NomBank | 
          6781050 | 
        
        
          | Nominal GDP per capita of Spain (by regions) | 
          2365 | 
        
        
          | Non-invasive Blood Pressure Estimation | 
          195189404 | 
        
        
          | non-linear regression | 
          8762622 | 
        
        
          | Nonbreaking Prefixes | 
          43190 | 
        
        
          | None_None | 
          7361689 | 
        
        
          | none202 | 
          5993 | 
        
        
          | Nonlinear_Data1_Benchmarking | 
          2189 | 
        
        
          | noNLP2 | 
          5533694 | 
        
        
          | nonlp3 | 
          5534520 | 
        
        
          | nonlp4 | 
          5514335 | 
        
        
          | noNLPnoTL | 
          5418141 | 
        
        
          | normal_selu | 
          14636290 | 
        
        
          | North American Slave Narratives | 
          54688021 | 
        
        
          | North Carolina Schools: Report Cards and Metadata | 
          2040990 | 
        
        
          | Norwegian Development Funds 2010-2015 | 
          52758336 | 
        
        
          | noshow | 
          10739535 | 
        
        
          | noshowapp | 
          2513958 | 
        
        
          | NOshowrate | 
          24771860 | 
        
        
          | [Not being Maintained] | 
          309011219 | 
        
        
          | Not Fake News | 
          4322 | 
        
        
          | Not MNIST | 
          255877003 | 
        
        
          | note piano | 
          27739 | 
        
        
          | nothing | 
          588903 | 
        
        
          | notMNIST | 
          116399788 | 
        
        
          | notMNIST dataset | 
          8458043 | 
        
        
          | nottfi | 
          744331 | 
        
        
          | Noun Compositionality Judgements | 
          496121 | 
        
        
          | Nouns Counts in the Works of Edgar Allan Poe | 
          561704 | 
        
        
          | Nouns in Works of Poe | 
          139697 | 
        
        
          | novel detection problem | 
          39652204 | 
        
        
          | novelty authorn | 
          2871669 | 
        
        
          | Now That's What I Call Music (U.S. releases) | 
          179483 | 
        
        
          | NP12345 | 
          698943 | 
        
        
          | NPS Chat | 
          2578726 | 
        
        
          | npzfile_of 10 model | 
          838376315 | 
        
        
          | NQ_CL_1718 | 
          851427 | 
        
        
          | NSE daily data | 
          31122 | 
        
        
          | NSE India stocks (companies) | 
          1997075697 | 
        
        
          | NSE India stocks (Indices) | 
          42234206 | 
        
        
          | NSE Stocks Data | 
          31361575 | 
        
        
          | NSEI aka Nifty 10 years data | 
          169482 | 
        
        
          | NSW/CPS | 
          754918 | 
        
        
          | ntmntm | 
          8071016 | 
        
        
          | NTSB Accident Reports | 
          23238603 | 
        
        
          | NTU Physical Design PA3 | 
          333128 | 
        
        
          | NU Data Mining Homework 1 | 
          107 | 
        
        
          | nullptr | 
          78859 | 
        
        
          | Number of Fire Deaths in England 1981 - 2016 | 
          192 | 
        
        
          | Number of trains on the sections of the network | 
          2582788 | 
        
        
          | Number Sequence System | 
          9255288 | 
        
        
          | number_of_atoms | 
          42559 | 
        
        
          | number_of_atoms | 
          10625 | 
        
        
          | number_of_atoms_test | 
          10625 | 
        
        
          | NumberDivisibilty | 
          6989 | 
        
        
          | numbers-of-shares-clgch | 
          3411917 | 
        
        
          | Numd80 | 
          380667276 | 
        
        
          | Numenta Anomaly Benchmark (NAB) | 
          9593155 | 
        
        
          | Numerai 2017 Tournament 52 | 
          37279734 | 
        
        
          | numerai_82 | 
          144188732 | 
        
        
          | numerai-sample | 
          103815144 | 
        
        
          | Numerai73 | 
          389549408 | 
        
        
          | Numeral Gestures recorded on iOS | 
          90326560 | 
        
        
          | NumeroNOMNIST | 
          12692 | 
        
        
          | Nürburgring Top 100 | 
          3858 | 
        
        
          | Nursing Home Compare | 
          333234374 | 
        
        
          | Nutrient | 
          1849 | 
        
        
          | Nutrition | 
          9140643 | 
        
        
          | Nutrition Facts for McDonald's Menu | 
          29988 | 
        
        
          | Nutrition facts for Starbucks Menu | 
          45283 | 
        
        
          | Nutrition1 | 
          1537920 | 
        
        
          | NVIDIA Self Driving Car Training Set | 
          2328695845 | 
        
        
          | NY City Taxi Trip distances | 
          315349767 | 
        
        
          | NY data | 
          42627208 | 
        
        
          | NY GeoJson | 
          1501587 | 
        
        
          | NY Philharmonic Performance History | 
          257861032 | 
        
        
          | NY State Lotto Winning Numbers | 
          55503 | 
        
        
          | NY TaXi Train | 
          483072 | 
        
        
          | NY trip data | 
          166615212 | 
        
        
          | NY_mental_patient_survey | 
          4184917 | 
        
        
          | NY_traffic_data | 
          63687406 | 
        
        
          | NYC 2016 Holidays | 
          535 | 
        
        
          | NYC Active Dog Licenses | 
          2783298 | 
        
        
          | NYC Baby Names | 
          891072 | 
        
        
          | NYC Borough Boundaries | 
          1219991 | 
        
        
          | NYC boroughs shapes | 
          2797308 | 
        
        
          | NYC City Hall Library Catalog | 
          5174122 | 
        
        
          | NYC Dog Names | 
          146455 | 
        
        
          | .nyc Domain Registrations | 
          3220894 | 
        
        
          | NYC Filming Permits | 
          13767651 | 
        
        
          | NYC flight data 2013 | 
          8424911 | 
        
        
          | NYC Government Building Energy Usage | 
          10656 | 
        
        
          | NYC hourly car accidents 2013-2016 | 
          243632397 | 
        
        
          | NYC Hourly Temperature | 
          220918 | 
        
        
          | NYC Neighborhoods | 
          1239877 | 
        
        
          | NYC Neighborhoods GPS | 
          17817 | 
        
        
          | NYC Open Data Metadata | 
          4722022 | 
        
        
          | NYC Parking Tickets | 
          8971948107 | 
        
        
          | NYC Property Sales | 
          13625843 | 
        
        
          | NYC Rat Sightings | 
          54883237 | 
        
        
          | NYC Rejected Vanity Plates | 
          2473266 | 
        
        
          | NYC Restaurant Inspections | 
          146153657 | 
        
        
          | NYC ride time prediction - assist files | 
          46678255 | 
        
        
          | NYC SUBWAY ENTRANCE | 
          239604 | 
        
        
          | NYC Subway Entrance Data | 
          239604 | 
        
        
          | nyc subway entrances | 
          239604 | 
        
        
          | NYC Subway Entrances | 
          239604 | 
        
        
          | nyc subway entrances | 
          239604 | 
        
        
          | nyc subway entrances | 
          239604 | 
        
        
          | nyc subway entrances | 
          239604 | 
        
        
          | NYC Subway Entrances_Malinee | 
          239604 | 
        
        
          | NYC Subway Entrances_Parichart | 
          239604 | 
        
        
          | NYC Taxi Data | 
          17455616 | 
        
        
          | nyc taxi data jan half | 
          504328679 | 
        
        
          | NYC Taxi dataset | 
          5041 | 
        
        
          | NYC taxi trip (1) | 
          385622215 | 
        
        
          | NYC taxi trip (2) | 
          385616657 | 
        
        
          | NYC taxi trip durations | 
          495707032 | 
        
        
          | NYC taxi yellow tripdata 201701 | 
          11586 | 
        
        
          | NYC taxi zones | 
          12322 | 
        
        
          | NYC Taxis combined with DIMACS | 
          241645369 | 
        
        
          | NYC Transit Data | 
          1312881840 | 
        
        
          | NYC Uber Pickups with Weather and Holidays | 
          2075599 | 
        
        
          | NYC Weather | 
          1913671 | 
        
        
          | NYC Weather Parameters | 
          3226 | 
        
        
          | nyc_taxi_trip | 
          2088286 | 
        
        
          | nyc-rolling-sales.csv  | 
          13625843 | 
        
        
          | NYCdata | 
          246001998 | 
        
        
          | nycdata2 | 
          90249030 | 
        
        
          | nycdatawork | 
          90336566 | 
        
        
          | NYCHA Staten Island Asbestos Siebel Data | 
          90192 | 
        
        
          | nyctaxieda | 
          498999442 | 
        
        
          | NYCUpdated | 
          90249030 | 
        
        
          | NYData | 
          35693290 | 
        
        
          | NYPD Motor Vehicle Collisions | 
          239819199 | 
        
        
          | NYSE-1965 | 
          975124 | 
        
        
          | nytimes articles | 
          20653 | 
        
        
          | O'Reilly Strata London 2017 Talks and Ratings | 
          52892 | 
        
        
          | Obama Visitor Logs | 
          1218589491 | 
        
        
          | Obama White House | 
          199928173 | 
        
        
          | Obama White House Budgets | 
          7566029 | 
        
        
          | Obesity Stats | 
          20397291 | 
        
        
          | objectrecgo | 
          34339535 | 
        
        
          | objectrecog | 
          40063927 | 
        
        
          | occgender | 
          31336 | 
        
        
          | occupation | 
          22667 | 
        
        
          | Ocean Ship Logbooks (1750-1850) | 
          19755905 | 
        
        
          | OD_test_1 | 
          1532563 | 
        
        
          | ODI Cricket Matches | 
          1350073 | 
        
        
          | ODI data from 1971 to 2011 | 
          573543 | 
        
        
          | OECD Better Life Index 2017 | 
          5023 | 
        
        
          | OECD macroeconomic data | 
          38819228 | 
        
        
          | OECD Productivity Data | 
          27609621 | 
        
        
          | Ofcom UK Broadband Speed 2016 Open dataset | 
          32855594 | 
        
        
          | officaldata | 
          287859225 | 
        
        
          | Oil and Gas  | 
          1036490 | 
        
        
          | Oil Barrels | 
          58880 | 
        
        
          | Oil Pipeline Accidents, 2010-Present | 
          908056 | 
        
        
          | Oil price and share price of a few companies | 
          3208415 | 
        
        
          | Oil sales analysis | 
          629117 | 
        
        
          | ojbklgbm | 
          8070518 | 
        
        
          | Oklahoma Earthquakes and Saltwater Injection Wells | 
          4187918 | 
        
        
          | Old Newspapers | 
          2196786581 | 
        
        
          | olivetti | 
          1903745 | 
        
        
          | Olivetti_Faces | 
          1903745 | 
        
        
          | Olympic Games | 
          436130 | 
        
        
          | Olympic Sports and Medals, 1896-2014 | 
          3047770 | 
        
        
          | Olympic Track & Field Results | 
          797283 | 
        
        
          | Olympics_1896_2012 | 
          404121 | 
        
        
          | one million movie | 
          70066042 | 
        
        
          | One week of Betfair data: 23 sports | 
          337478465 | 
        
        
          | One week of Betfair data: horses | 
          150888516 | 
        
        
          | One Week of Global Feeds - News Dataset | 
          294039203 | 
        
        
          | Oneside | 
          1015880 | 
        
        
          | oneside&smote | 
          4166950 | 
        
        
          | OnesideAlone | 
          1015880 | 
        
        
          | OnesideSelec | 
          1015854 | 
        
        
          | OneVsRest Classifier versus Multi-Output | 
          248022779 | 
        
        
          | Onifi risk loan risk prediction | 
          28953759 | 
        
        
          | Online Auctions Dataset | 
          1049357 | 
        
        
          | Online Chinese Chess (Xiangqi) | 
          15920715 | 
        
        
          | Online Courses from Harvard and MIT | 
          66858 | 
        
        
          | Online Generated MNIST Dataset | 
          6363682 | 
        
        
          | Online Job Postings | 
          96789716 | 
        
        
          | Online News Popular | 
          5229121 | 
        
        
          | Online News Popularity | 
          5220015 | 
        
        
          | Online Product Sales | 
          1627125 | 
        
        
          | Online Recipe Data | 
          333796 | 
        
        
          | Online Retail | 
          23715344 | 
        
        
          | Online Retail Data Set | 
          45580638 | 
        
        
          | online sales | 
          1519635 | 
        
        
          | OnlineNewsPopularity  | 
          24311769 | 
        
        
          | onlinenws | 
          24311769 | 
        
        
          | onlineRetail | 
          7548662 | 
        
        
          | onlineretail | 
          3291222 | 
        
        
          | Only Sathyam | 
          20248 | 
        
        
          | onstatus | 
          661071 | 
        
        
          | oooooooooooooooo | 
          6531 | 
        
        
          | op-123 | 
          1024979 | 
        
        
          | Open Beauty Facts | 
          12317416 | 
        
        
          | Open Data 500 Companies | 
          489447 | 
        
        
          | Open Data 500 Companies | 
          82749 | 
        
        
          | Open Exoplanet Catalogue | 
          466109 | 
        
        
          | Open Flood Risk by Postcode | 
          88682006 | 
        
        
          | Open Food Facts | 
          1010256825 | 
        
        
          | Open Multilingual WordNet | 
          48320874 | 
        
        
          | Open Postcode Elevation | 
          19796379 | 
        
        
          | Open Postcode Geo | 
          281633058 | 
        
        
          | Open Pubs | 
          7106722 | 
        
        
          | Open Sprayer images | 
          155083085 | 
        
        
          | OpenAddresses - Asia and Oceania | 
          3997876240 | 
        
        
          | OpenAddresses - Europe | 
          7911632856 | 
        
        
          | OpenAddresses - North America (excluding U.S.) | 
          4887052811 | 
        
        
          | OpenAddresses - South America | 
          6611249144 | 
        
        
          | OpenAddresses - U.S. Midwest | 
          2174018364 | 
        
        
          | OpenAddresses - U.S. Northeast | 
          2045068168 | 
        
        
          | OpenAddresses - U.S. South | 
          3404926019 | 
        
        
          | OpenAddresses - U.S. West | 
          2448531541 | 
        
        
          | openai unsupervised sentiment | 
          320140754 | 
        
        
          | OpenCorpora: Russian | 
          282996427 | 
        
        
          | Opendata AIG Brazil | 
          5584083 | 
        
        
          | OpenData Impact Map | 
          782515 | 
        
        
          | OpenStreetMap Data - North Bangalore, India | 
          205229390 | 
        
        
          | Opinion Lexicon | 
          67865 | 
        
        
          | optimized | 
          4080828 | 
        
        
          | order_products__train | 
          24680147 | 
        
        
          | Orders data | 
          1428213 | 
        
        
          | oregon education | 
          233763 | 
        
        
          | Oreo Flavors Taste-Test Ratings | 
          1083 | 
        
        
          | orig_dat | 
          9199904 | 
        
        
          | Origin | 
          78025130 | 
        
        
          | Original mdf | 
          292334591 | 
        
        
          | Original Submission Sample | 
          240909 | 
        
        
          | original_data | 
          198373006 | 
        
        
          | original_edx_data | 
          10006416 | 
        
        
          | ortools.zip | 
          36750210 | 
        
        
          | OSHA Inspections of Dental Practices (1972-2017) | 
          737479 | 
        
        
          | OSMI Mental Health in Tech Survey 2016 | 
          83459533 | 
        
        
          | OSRM Data | 
          580270529 | 
        
        
          | oss file sizes | 
          479681865 | 
        
        
          | Osu! Standard Rankings | 
          9810 | 
        
        
          | Other parameters | 
          18196682 | 
        
        
          | Other try | 
          14401031 | 
        
        
          | otherkernels | 
          2102412 | 
        
        
          | others_MA8 | 
          12756180 | 
        
        
          | oudav4 | 
          1091879 | 
        
        
          | ouptutj | 
          17321574 | 
        
        
          | out.csv | 
          4860484 | 
        
        
          | Outcomes for prediction | 
          396 | 
        
        
          | Outlier | 
          2871649 | 
        
        
          | outliers | 
          85713 | 
        
        
          | outmodelch | 
          124248654 | 
        
        
          | output | 
          2041915 | 
        
        
          | output | 
          7374647 | 
        
        
          | output | 
          5012984 | 
        
        
          | output | 
          12725557 | 
        
        
          | output | 
          3256 | 
        
        
          | Output for 20 kernels porto seguro | 
          384308032 | 
        
        
          | output of the kernel | 
          37412275 | 
        
        
          | output sample | 
          43499 | 
        
        
          | output4 | 
          101080830 | 
        
        
          | outputn | 
          471686 | 
        
        
          | Over 13,000 Steam Games | 
          539878 | 
        
        
          | Overlapping chromosomes | 
          24203163 | 
        
        
          | Overwatch | 
          1927 | 
        
        
          | Overwatch Game Records | 
          710065 | 
        
        
          | Own dataset | 
          561 | 
        
        
          | Oyo rooms Delhi | 
          34180 | 
        
        
          | p2hdata | 
          116457882 | 
        
        
          | P300-Dataset | 
          323290993 | 
        
        
          | padestrians_images | 
          20323705 | 
        
        
          | Paintings | 
          6021 | 
        
        
          | Pak Youth Unemployment vs Terrorist Attacks | 
          34071 | 
        
        
          | Pakistan Drone Attacks | 
          161953 | 
        
        
          | Pakistan Drone Attacks | 
          486315 | 
        
        
          | Pakistan Education Performance Dataset | 
          253565 | 
        
        
          | Pakistan Intellectual Capital | 
          332809 | 
        
        
          | Pakistan Intellectual Capital  | 
          332805 | 
        
        
          | Pakistan Suicide Bombing Attacks | 
          231347 | 
        
        
          | Pakistan Tehsil District Census | 
          54663 | 
        
        
          | PakistanDroneAttack | 
          161965 | 
        
        
          | palm_dataset | 
          17227039 | 
        
        
          | pandas_for_everyone | 
          81932 | 
        
        
          | pandas_tutorial | 
          115124 | 
        
        
          | pandas-tutorial-datasets | 
          1165078 | 
        
        
          | PanLex Swadesh | 
          2868894 | 
        
        
          | Pantheon Project: Historical Popularity Index | 
          1530565 | 
        
        
          | Papa New Guinea | 
          181108 | 
        
        
          | Paper_Scissor | 
          8226325 | 
        
        
          | Paradigm | 
          361186 | 
        
        
          | Paradise Papers | 
          7316696 | 
        
        
          | Paradise-Panama-Papers | 
          141019215 | 
        
        
          | parallel English-Spanish  | 
          141185 | 
        
        
          | Parallel scheduling dataset for Cloud environment | 
          24559 | 
        
        
          | Parallel scheduling workload | 
          25421 | 
        
        
          | ParamS5 | 
          5458701 | 
        
        
          | paramsearch | 
          3649 | 
        
        
          | Paranormal Romance Novel Titles | 
          93647 | 
        
        
          | Parking Violations, December 2015 | 
          26605152 | 
        
        
          | Parkinson Disease Spiral Drawings | 
          16482050 | 
        
        
          | Parkinson's Disease Observations | 
          889296 | 
        
        
          | Parkinson's Vision-Based Pose Estimation Dataset | 
          138624226 | 
        
        
          | Parole Data | 
          18533 | 
        
        
          | Parole hearings in New York State | 
          9881645 | 
        
        
          | Part 1 - Data Preprocessing | 
          3880 | 
        
        
          | PartialDatasets | 
          820867 | 
        
        
          | Participation in cultural activities | 
          622491 | 
        
        
          | Party strength in each US state | 
          125762 | 
        
        
          | past_data | 
          68252050 | 
        
        
          | past_data1 | 
          11989231 | 
        
        
          | past_data2 | 
          11989231 | 
        
        
          | Patent Assignment Daily | 
          286556804 | 
        
        
          | Patent Grant Full Text | 
          596450131 | 
        
        
          | Patent Litigations | 
          1684999366 | 
        
        
          | Path of exile game statistic | 
          9171959 | 
        
        
          | patient | 
          512 | 
        
        
          | Patient Characteristics Survey (PCS): 2015 | 
          4184917 | 
        
        
          | patientmet | 
          678 | 
        
        
          | patients | 
          1190 | 
        
        
          | patientsmeta | 
          678 | 
        
        
          | Pauvrete_richesse_france_2014 | 
          19638 | 
        
        
          | PAytm edit | 
          1319411 | 
        
        
          | PC_Games | 
          487509 | 
        
        
          | PCA analysis with Decision tree | 
          300584782 | 
        
        
          | pcnn fhv lee 32 | 
          4712245 | 
        
        
          | pcnn fhv lee16 | 
          4728245 | 
        
        
          | pcnn fhv lee24 | 
          4733100 | 
        
        
          | pcnn fhv lee32 | 
          4712245 | 
        
        
          | pCNN FHV Lee8 | 
          4671863 | 
        
        
          | PDD Graph | 
          2642 | 
        
        
          | pe_pkl | 
          16803263 | 
        
        
          | PE08 Parseval | 
          296619 | 
        
        
          | Pedestrian Dataset | 
          51232595 | 
        
        
          | Pedestrian Dataset | 
          24378183 | 
        
        
          | pedestrian no pedestrian | 
          16633885 | 
        
        
          | Pediacities NYC Neighborhoods | 
          498176 | 
        
        
          | Penn Tree Bank | 
          1746323 | 
        
        
          | Penn World Table | 
          7435033 | 
        
        
          | Pennsylvania PSSA and Keystone Results | 
          11047144 | 
        
        
          | Pennsylvania Safe Schools Report | 
          7180485 | 
        
        
          | People and Character Wikipedia Page Content | 
          232516861 | 
        
        
          | people walking | 
          8025457 | 
        
        
          | People Walking with No Occlusion | 
          66 | 
        
        
          | People Wikipedia Data | 
          30838672 | 
        
        
          | People without internet | 
          138506 | 
        
        
          | Per Capita Personal Income by Metro Area 2007 2015 | 
          5856 | 
        
        
          | PerHour | 
          371073 | 
        
        
          | Periodic Table of Elements Mapped to Stocks | 
          8188565 | 
        
        
          | Periodic Table of the Elements | 
          717980 | 
        
        
          | periodicTable.cvs | 
          12360 | 
        
        
          | perishable products Colombian markets | 
          2985281 | 
        
        
          | Perluniprops | 
          136038 | 
        
        
          | perMinuteWeatherReport | 
          27425604 | 
        
        
          | person | 
          28181208 | 
        
        
          | Person of the Year, 1927-Present | 
          11686 | 
        
        
          | personal | 
          17172700 | 
        
        
          | Personal | 
          48948 | 
        
        
          | PersonalTimestamp | 
          354 | 
        
        
          | Pesticide Data Program (2013) | 
          111451786 | 
        
        
          | Pesticide Data Program (2014) | 
          121908874 | 
        
        
          | Pesticide Data Program (2015) | 
          128802442 | 
        
        
          | Pesticide Use in Agriculture | 
          24834854 | 
        
        
          | PGA Tour 2016/2017 Leaderboards | 
          964012 | 
        
        
          | PGJ_DR about my private work | 
          623209 | 
        
        
          | Pharmaceutical Tablets Dataset | 
          93218742 | 
        
        
          | Philadelphia Crime Data | 
          310178968 | 
        
        
          | Philadelphia Real Estate | 
          220983 | 
        
        
          | Phishing dataset from Sep 01-24 | 
          360527 | 
        
        
          | photo5 | 
          739 | 
        
        
          | photo5.jpg | 
          144753 | 
        
        
          | photonew | 
          6707 | 
        
        
          | pic_asdf | 
          234234 | 
        
        
          | pickefile | 
          235800 | 
        
        
          | pickled mnist neural net | 
          191267 | 
        
        
          | pickletest | 
          6770 | 
        
        
          | Picture1 | 
          77794 | 
        
        
          | Pictures from internet - memes | 
          14216914 | 
        
        
          | PID666 | 
          23279 | 
        
        
          | PIL Corpus | 
          4170899 | 
        
        
          | Pill Count detection | 
          40228319 | 
        
        
          | pima indian | 
          23279 | 
        
        
          | Pima Indian Diabetes Data | 
          30789 | 
        
        
          | Pima Indian Diabetes Problem | 
          24045 | 
        
        
          | Pima Indians Diabetes Data Set | 
          23279 | 
        
        
          | Pima Indians Diabetes Database | 
          23873 | 
        
        
          | Pima Indians onset of diabetes dataset. | 
          23279 | 
        
        
          | Pima_Diabetes_dataset | 
          26255 | 
        
        
          | pima-indian | 
          23279 | 
        
        
          | pima-indian-diabetes | 
          1003 | 
        
        
          | pima-indians-diabetes | 
          23279 | 
        
        
          | pima-indians-diabetes.data | 
          23279 | 
        
        
          | PimaDiabetesMean | 
          30394 | 
        
        
          | PimaDiabetesMedian | 
          25280 | 
        
        
          | PimaDiabetesZeroesRemoved | 
          12719 | 
        
        
          | Pisa Scores | 
          114208 | 
        
        
          | Pisa scores Males students Math data 2015 | 
          1570 | 
        
        
          | Pisymbol | 
          14601 | 
        
        
          | Pitcfork reviews CSV | 
          33370056 | 
        
        
          | pizza data v2 | 
          318851 | 
        
        
          | Pizza In Brooklyn | 
          3234 | 
        
        
          | Pizza restaurants and the pizza they sell | 
          1113658 | 
        
        
          | PizzaDataV2 | 
          318851 | 
        
        
          | PizzaZona14V2 | 
          318851 | 
        
        
          | pklData | 
          8460437 | 
        
        
          | pkugoodspeed | 
          4046431 | 
        
        
          | PL 196x Corpus | 
          58299303 | 
        
        
          | places | 
          518562 | 
        
        
          | PlanesNet - Planes in Satellite Imagery | 
          59705833 | 
        
        
          | player.csv | 
          15422590 | 
        
        
          | Players2016 | 
          170890 | 
        
        
          | PLAYERUNKNOWN'S BATTLEGROUNDS Player Statistics | 
          65064745 | 
        
        
          | Playing with text classified ads | 
          55453734 | 
        
        
          | playstore | 
          5114702 | 
        
        
          | playstore1 | 
          5114694 | 
        
        
          | please | 
          8042801 | 
        
        
          | pleasework | 
          4417183 | 
        
        
          | PM2.5 Data of Five Chinese Cities | 
          15615995 | 
        
        
          | pnet 40 | 
          18477645 | 
        
        
          | poc- restaurent reviews | 
          61332 | 
        
        
          | pocdddd | 
          5993 | 
        
        
          | Poems from poetryfoundation.org | 
          605913 | 
        
        
          | Poetry | 
          6183930 | 
        
        
          | Poetry Analysis Data | 
          605913 | 
        
        
          | Poetry Analysis with Machine Learning | 
          605913 | 
        
        
          | Points for Perceptron Class | 
          1881 | 
        
        
          | Pokachi | 
          7992 | 
        
        
          | Pokedex | 
          130239 | 
        
        
          | Pokemon | 
          79392 | 
        
        
          | pokemon | 
          44028 | 
        
        
          | Pokemon | 
          7992 | 
        
        
          | pokemon | 
          44028 | 
        
        
          | Pokemon | 
          698383 | 
        
        
          | Pokemon | 
          698383 | 
        
        
          | Pokemon (Gen 7) | 
          122016 | 
        
        
          | Pokemon battle | 
          698383 | 
        
        
          | Pokemon Dataset | 
          7992 | 
        
        
          | Pokémon for Data Mining and Machine Learning | 
          818798 | 
        
        
          | Pokemon Go Gen II (251) | 
          31606 | 
        
        
          | Pokemon Images | 
          29701331 | 
        
        
          | Pokemon Images Dataset | 
          41408300 | 
        
        
          | Pokemon Moon Wonder Trade Informatics | 
          36505 | 
        
        
          | Pokemon Sun and Moon (Gen 7) Stats | 
          1692546 | 
        
        
          | Pokemon Trainers Dataset | 
          1884160 | 
        
        
          | Pokemon Visual Stats using SEABORN! | 
          7992 | 
        
        
          | Pokemon Weakness - Generation 1 | 
          7832 | 
        
        
          | Pokemon with stats | 
          44028 | 
        
        
          | Pokemon_Beginner | 
          698383 | 
        
        
          | Pokemon- Weedle's Cave | 
          698383 | 
        
        
          | pokemon.csv | 
          40454 | 
        
        
          | Pokemon1 | 
          79392 | 
        
        
          | Pokemon12 | 
          44028 | 
        
        
          | PokemonGO | 
          17000 | 
        
        
          | Poker Hand Dataset | 
          6560698 | 
        
        
          | Poker Hold'Em Games | 
          82609982 | 
        
        
          | Poker sample data | 
          214 | 
        
        
          | Poker Winings | 
          214 | 
        
        
          | poker1 | 
          853 | 
        
        
          | Pokerset | 
          214 | 
        
        
          | PokWin | 
          853 | 
        
        
          | Police Killing | 
          293056 | 
        
        
          | Police Killings | 
          294629 | 
        
        
          | Police Officer Deaths in the U.S. | 
          4597386 | 
        
        
          | Polish OLX items | 
          25575073 | 
        
        
          | PolishDS | 
          8963390 | 
        
        
          | Political Social Media Posts | 
          4309577 | 
        
        
          | Polling | 
          4178 | 
        
        
          | PollutionLevel | 
          517117 | 
        
        
          | PolynomialRegression | 
          6172 | 
        
        
          | POM DB1 | 
          49601840 | 
        
        
          | popados | 
          2944 | 
        
        
          | popopopop | 
          99185 | 
        
        
          | Popular websites across the globe | 
          2662038 | 
        
        
          | Population | 
          365 | 
        
        
          | Population | 
          1126 | 
        
        
          | Population | 
          123495 | 
        
        
          | population by state | 
          630 | 
        
        
          | Population Median Age by Country since 1950 | 
          329006 | 
        
        
          | Population vs profit made by restuarant | 
          1456 | 
        
        
          | Population_ibge_al | 
          4261 | 
        
        
          | Porn Data | 
          21068290 | 
        
        
          | Port Segure Mix | 
          21296551 | 
        
        
          | portal | 
          35951232 | 
        
        
          | Porter Test | 
          680060 | 
        
        
          | portfolio_hackerearth | 
          845939 | 
        
        
          | Portland Oregon Crime Data | 
          136956832 | 
        
        
          | Porto LCFR | 
          22539419 | 
        
        
          | Porto Seguro | 
          24594563 | 
        
        
          | Porto Seguro | 
          107381901 | 
        
        
          | Porto Seguro | 
          115852544 | 
        
        
          | Porto Seguro public kernel results | 
          8499 | 
        
        
          | Porto Seguro stacking | 
          21676551 | 
        
        
          | Porto Seguro train/test 5 | 
          284015602 | 
        
        
          | porto seguro_train | 
          115852544 | 
        
        
          | porto seguro's safe driver noisy features | 
          9576 | 
        
        
          | Porto Seguro s Safe Driver Prediction | 
          300584782 | 
        
        
          | Porto Seguro s Safe Driver Prediction | 
          115852544 | 
        
        
          | Porto Seguro s Safe Driver Prediction data | 
          78025130 | 
        
        
          | Porto Seguro's Safe Driver Prediction Dataset | 
          300584782 | 
        
        
          | Porto Seguro s Safe Driver Prediction files | 
          287859225 | 
        
        
          | Porto Seguro s Safe Driver Prediction test data | 
          172006681 | 
        
        
          | Porto Seguro s Safe Driver Prediction train data | 
          115852544 | 
        
        
          | Porto Seguro s Safe Driver Prediction_0.26 | 
          10297156 | 
        
        
          | Porto Seguro s stack results | 
          20424567 | 
        
        
          | Porto train | 
          478633319 | 
        
        
          | porto_mdlp | 
          63833549 | 
        
        
          | Porto_MEDIAN | 
          118120409 | 
        
        
          | PORTO_MEDIAN_GO | 
          86419583 | 
        
        
          | porto_seguro | 
          0 | 
        
        
          | Porto_seguro_features_score | 
          12059 | 
        
        
          | Porto-Data | 
          287859225 | 
        
        
          | porto-knn | 
          24594563 | 
        
        
          | PortoAutoML | 
          29962600 | 
        
        
          | portomix | 
          19160607 | 
        
        
          | portos | 
          31424312 | 
        
        
          | portose | 
          78025130 | 
        
        
          | PortoSeguro | 
          2841792 | 
        
        
          | portoseguro2 | 
          10136619 | 
        
        
          | portoseguro3 | 
          12978411 | 
        
        
          | PortoT | 
          80247495 | 
        
        
          | Possible Asteroid Impacts with Earth | 
          1817658 | 
        
        
          | Poverty and Equity Database | 
          1372076 | 
        
        
          | Powerball Numbers | 
          61605 | 
        
        
          | PP Attachment Corpus | 
          3113650 | 
        
        
          | ppi_data_15000 | 
          2841308 | 
        
        
          | ppi_experiment | 
          189515613 | 
        
        
          | pppppp | 
          173172 | 
        
        
          | Practice | 
          18 | 
        
        
          | Practice 1 | 
          5678 | 
        
        
          | practice data | 
          18070 | 
        
        
          | Practice Data Set for Air Quality | 
          3044 | 
        
        
          | Practice Dataset | 
          5436304 | 
        
        
          | Practice HE | 
          58616457 | 
        
        
          | Practice Titanic | 
          93081 | 
        
        
          | prb_kl | 
          3111160 | 
        
        
          | Pre-Processed Images | 
          302494843 | 
        
        
          | Pre-processed testing set | 
          283639 | 
        
        
          | Pre-processed train set | 
          1873904 | 
        
        
          | Pre-processed Twitter tweets | 
          192242 | 
        
        
          | Pre-trained Word Vectors for Spanish | 
          2868903315 | 
        
        
          | Precip | 
          397793 | 
        
        
          | Precipitation in Syracuse, NY | 
          13436 | 
        
        
          | Precipitation_SE_Michigan | 
          263785 | 
        
        
          | pred072.csv | 
          4046396 | 
        
        
          | predict | 
          12535647 | 
        
        
          | Predict Happiness | 
          34025987 | 
        
        
          | Predict Is_Response_Happiness | 
          22785500 | 
        
        
          | Predict Molecular Properties | 
          1202077116 | 
        
        
          | Predict Mortality/Death Rate. | 
          320054078 | 
        
        
          | Predict Network Attack | 
          2906814 | 
        
        
          | Predict Network Attacks | 
          29726213 | 
        
        
          | Predict Network Attacks  | 
          29726213 | 
        
        
          | Predict NHL Player Salaries | 
          449021 | 
        
        
          | Predict Outcome of Pregnancy | 
          3478193499 | 
        
        
          | Predict temperature | 
          38488853 | 
        
        
          | Predict the Happiness | 
          63004455 | 
        
        
          | Predict UK retailer content marketing | 
          6137526 | 
        
        
          | Predict_Disease_Xray | 
          7464640863 | 
        
        
          | Predict'em All | 
          799953514 | 
        
        
          | Predicted | 
          603071 | 
        
        
          | Predicted Target label of Titanic test data | 
          3258 | 
        
        
          | predicted_values | 
          39698 | 
        
        
          | Predicting a Biological Response | 
          4723978 | 
        
        
          | predicting Income group | 
          4835078 | 
        
        
          | Predicting Movie Revenue | 
          101633 | 
        
        
          | Predicting prices | 
          134964916 | 
        
        
          | Predicting Who Pays Back Loans | 
          341962107 | 
        
        
          | Prediction | 
          15368248 | 
        
        
          | prediction | 
          1635346 | 
        
        
          | prediction | 
          1635358 | 
        
        
          | prediction | 
          603071 | 
        
        
          | prediction | 
          1397246 | 
        
        
          | prediction | 
          2839 | 
        
        
          | Prediction | 
          4098 | 
        
        
          | prediction best 1 round mecari | 
          47850524 | 
        
        
          | Prediction Challenge 1 | 
          224651 | 
        
        
          | Prediction Challenge 2 | 
          351700 | 
        
        
          | Prediction House | 
          12435 | 
        
        
          | prediction1 | 
          8187498 | 
        
        
          | prediction2 | 
          7677579 | 
        
        
          | predictionhaitam | 
          1635346 | 
        
        
          | Predictions | 
          46317 | 
        
        
          | Predictions mark1 | 
          4070177 | 
        
        
          | Predictive analysis | 
          52836 | 
        
        
          | Predictive happiness | 
          62524288 | 
        
        
          | Predictive Maintenance | 
          57700 | 
        
        
          | predicts | 
          12535647 | 
        
        
          | PredOutput | 
          26129 | 
        
        
          | PredOutputCSV | 
          26129 | 
        
        
          | predY.csv | 
          20820001 | 
        
        
          | Premier League Data | 
          334360 | 
        
        
          | Premier League 00/01 | 
          14808 | 
        
        
          | Premier League 2001-14 | 
          190376 | 
        
        
          | premtewari | 
          64141 | 
        
        
          | prepared_data | 
          215775688 | 
        
        
          | Prepossessed Data | 
          1025108 | 
        
        
          | preprocess | 
          6 | 
        
        
          | preprocess2 | 
          6 | 
        
        
          | Preprocessed Data | 
          1058736 | 
        
        
          |  Preprocessed Dataset NYSE stocks | 
          3225310 | 
        
        
          | preprocessed_description | 
          103902003 | 
        
        
          | Preprocessing-1 of Titanic Dataset | 
          38858 | 
        
        
          | Preprocessing-2 of Titanic Dataset | 
          212961 | 
        
        
          | Prescription-based prediction | 
          163988932 | 
        
        
          | President by County | 
          257373 | 
        
        
          | Presidential Approval Ratings | 
          1002437 | 
        
        
          | Presidential Cabinet Nominations | 
          23161 | 
        
        
          | Presidential Inaugural Addresses | 
          806273 | 
        
        
          | Presidential Pardons, 1900-2017 | 
          8331 | 
        
        
          | Press Release by Govt. of India | 
          19472188 | 
        
        
          | Pretrain file  | 
          1561949416 | 
        
        
          | Pretrained | 
          129647814 | 
        
        
          | pretrained cnn model | 
          18867321 | 
        
        
          | Pretrained PyTorch models | 
          383897612 | 
        
        
          | pretrained_cnn | 
          129406905 | 
        
        
          | pretrained2 | 
          160776230 | 
        
        
          | pretrained3 | 
          160776230 | 
        
        
          | Pretrained6 | 
          160776230 | 
        
        
          | Price of petroleum products in India | 
          18530 | 
        
        
          | price_001 | 
          2020927 | 
        
        
          | price_AV | 
          1270747 | 
        
        
          | Price_suggestion | 
          189998479 | 
        
        
          | price-2017-07 | 
          1244 | 
        
        
          | price-predict-submit | 
          7297703 | 
        
        
          | price1 | 
          678432 | 
        
        
          | Pricing Model | 
          3875898 | 
        
        
          | Primary breast cancer vs Normal breast tissue | 
          2325053 | 
        
        
          | prime and composite | 
          451 | 
        
        
          | primeNumbers | 
          185 | 
        
        
          | Primetime Emmy Awards, 1949-2017 | 
          1728086 | 
        
        
          | Prioritization Matrix | 
          42211 | 
        
        
          | private data | 
          501020188 | 
        
        
          | Pro and College Sports Lines | 
          276038 | 
        
        
          | Problem Report Corpus | 
          3467763 | 
        
        
          | process | 
          250006728 | 
        
        
          | Processed Training Dataset | 
          23265 | 
        
        
          | ProcessedDatafiles | 
          220410569 | 
        
        
          | Producer Price Index | 
          142373498 | 
        
        
          | Product Reviews | 
          835097 | 
        
        
          | Professional Hockey Database | 
          5663000 | 
        
        
          | Projec | 
          19580 | 
        
        
          | Project | 
          641529 | 
        
        
          | project | 
          12102571 | 
        
        
          | Project 1 - Abhinandan | 
          798235 | 
        
        
          | Project 2 | 
          4228768 | 
        
        
          | Project 3 data- Bellwether | 
          35627627 | 
        
        
          | Project Data  | 
          89823 | 
        
        
          | Project Euler - Membership by Country - 20170827 | 
          17259 | 
        
        
          | Project Gutenberg's Top 20 Books | 
          14094506 | 
        
        
          | Project Tycho: Contagious Diseases | 
          20688126 | 
        
        
          | project1 | 
          869537 | 
        
        
          | Project1 | 
          646643 | 
        
        
          | Projecting Community Risk near Industrial Sites | 
          39141 | 
        
        
          | projectprediction | 
          1383040 | 
        
        
          | Promoter Site Prediction | 
          324226 | 
        
        
          | Promoter Site Prediction FINAL | 
          324226 | 
        
        
          | promoterprediction | 
          324226 | 
        
        
          | Propbank | 
          5330559 | 
        
        
          | Proper-names Categories | 
          80194 | 
        
        
          | properati dataset tp1 1 | 
          287348203 | 
        
        
          | properties | 
          16977714 | 
        
        
          | Properties for sale in Argentina | 
          339338139 | 
        
        
          | Properties on StayZilla | 
          2314881 | 
        
        
          | properties smiles | 
          211762 | 
        
        
          | properties_2016 | 
          52652121 | 
        
        
          | properties2016 | 
          52652121 | 
        
        
          | prophet | 
          410674 | 
        
        
          | prophet-base | 
          410682 | 
        
        
          | Propiedades-Properati | 
          462984429 | 
        
        
          | propiedades-tpdatos | 
          501659329 | 
        
        
          | Pros and Cons | 
          2921218 | 
        
        
          | Prospects For Realtors from Social Media | 
          851375 | 
        
        
          | Prosper Loan Data | 
          86471101 | 
        
        
          | prostate.csv | 
          9254 | 
        
        
          | Protein Contact Prediction | 
          755686397 | 
        
        
          | Protein Sequence Dataset for Multiple organisms | 
          20405540 | 
        
        
          | ProteinSubcellularLocalization | 
          1009281 | 
        
        
          | proto train | 
          287859225 | 
        
        
          | Protocol Gifts | 
          868648 | 
        
        
          | prototype | 
          52792929 | 
        
        
          | Provincias y Sectores Rep. Dom. | 
          294717 | 
        
        
          | Proyeksi Jumlah Penduduk Indonesia (Jenis Kelamin) | 
          15697 | 
        
        
          | prueba | 
          7713906 | 
        
        
          | Prueba1 | 
          12237502 | 
        
        
          | Prueba13_12 | 
          7713886 | 
        
        
          | prueba2 | 
          7713886 | 
        
        
          | pruebas | 
          11873255 | 
        
        
          | PS1 graph one | 
          38735 | 
        
        
          | ps1-he | 
          845939 | 
        
        
          | ps2_xyz | 
          33774512 | 
        
        
          | PSL data | 
          2391140 | 
        
        
          | pstrain | 
          108304724 | 
        
        
          | psychology  | 
          6163 | 
        
        
          | Psychology Field Work | 
          43798 | 
        
        
          | Psychometric Data | 
          3597312 | 
        
        
          | PTB Dataset | 
          34880190 | 
        
        
          | PTB-preprocessed | 
          6433681 | 
        
        
          | PTE_HE | 
          22785500 | 
        
        
          | PUBG Match Deaths and Statistics | 
          4111549533 | 
        
        
          | Public Kernel | 
          22493655 | 
        
        
          | Public Kernel Results from Favorita Forecasting | 
          48778780 | 
        
        
          | Public Transport in Zurich | 
          497611277 | 
        
        
          | Publication and usage reports, 1998-2017-10 (BR) | 
          59905114 | 
        
        
          | Publicly Supported Symbols of the Confederacy | 
          174986 | 
        
        
          | PublicSubMissionFiles | 
          39879475 | 
        
        
          | publisher_contrast | 
          11713 | 
        
        
          | puller | 
          770 | 
        
        
          | pullerData | 
          768 | 
        
        
          | Pulse of the Nation | 
          489303 | 
        
        
          | pumpkin pic | 
          56267 | 
        
        
          | Pune Property Prices | 
          37131 | 
        
        
          | PuneAI | 
          66767 | 
        
        
          | Punkt Sentence Tokenizer Models | 
          36731110 | 
        
        
          | Punkt Sentence Tokenizer Models | 
          36731110 | 
        
        
          | Pupils sample data | 
          1034 | 
        
        
          | purchaseandredemption | 
          158536594 | 
        
        
          | Purdue RH | 
          8495808 | 
        
        
          | py-random | 
          11549 | 
        
        
          | Python Code Example | 
          1002 | 
        
        
          | Python Folium Country Boundaries | 
          252515 | 
        
        
          | python implementation of the apriorialgorithm | 
          4917 | 
        
        
          | Python Questions from Stack Overflow | 
          1739368138 | 
        
        
          | Python Utility Code for Deep Learning Exercises | 
          2582 | 
        
        
          | Python_data | 
          61194 | 
        
        
          | Python_scripts | 
          1328 | 
        
        
          | Python-scripts | 
          1314 | 
        
        
          | python2_lesson06_keys | 
          3494 | 
        
        
          | pythonbasics | 
          67915 | 
        
        
          | Pythondatee | 
          809411 | 
        
        
          | pythonfile | 
          293 | 
        
        
          | PyTorch SENet 1520 | 
          185343 | 
        
        
          | Q & A Discussed in Parliament of India | 
          166519994 | 
        
        
          | q111qq | 
          45742895 | 
        
        
          | qaqaqaqaqaqaqaqaqaqaqaqaqaqaqaqa | 
          98871 | 
        
        
          | QB NFL Draft Combine Results From 2000-2015 | 
          47293 | 
        
        
          | QBI Image Enhancement | 
          6263184 | 
        
        
          | QBI Image Segmentation | 
          43421356 | 
        
        
          | qiixang109merge29 | 
          6364531 | 
        
        
          | qixiang109-cnnret | 
          6344773 | 
        
        
          | qixiang109-ensemble | 
          6356379 | 
        
        
          | qixiang109-ensemble2 | 
          6361594 | 
        
        
          | qixiang109-merge3 | 
          6358880 | 
        
        
          | qixiang109-mergelinear | 
          6367202 | 
        
        
          | qixiang109-round | 
          2298925 | 
        
        
          | qixiang109ensemble3 | 
          6363224 | 
        
        
          | qixiang109merge15 | 
          6364712 | 
        
        
          | qixiang109merge17 | 
          6363795 | 
        
        
          | qixiang109merge18 | 
          6363374 | 
        
        
          | qixiang109merge19 | 
          6362908 | 
        
        
          | qixiang109merge20 | 
          6363346 | 
        
        
          | qixiang109merge21 | 
          6363443 | 
        
        
          | qixiang109merge22 | 
          6363123 | 
        
        
          | qixiang109merge23 | 
          6369065 | 
        
        
          | qixiang109merge24 | 
          6369389 | 
        
        
          | qixiang109merge25 | 
          6367847 | 
        
        
          | qixiang109merge26 | 
          6364275 | 
        
        
          | qixiang109merge27 | 
          6363356 | 
        
        
          | qixiang109merge28 | 
          6363439 | 
        
        
          | qixiang109merge29 | 
          0 | 
        
        
          | qixiang109merge30 | 
          0 | 
        
        
          | qixiang109merge7 | 
          6362099 | 
        
        
          | qq<>"= | 
          5993 | 
        
        
          | quality | 
          5632 | 
        
        
          | Quality | 
          5632 | 
        
        
          | quality & deformation | 
          14881 | 
        
        
          | Quality Dataset | 
          5632 | 
        
        
          | Quality Prediction in a Mining Process | 
          53385997 | 
        
        
          | Quantifying WIKIPEDIA Usage in Education | 
          99358 | 
        
        
          | Quarterback Stats from 1996 - 2016 | 
          1509405 | 
        
        
          | queries | 
          1574010 | 
        
        
          | querydata | 
          4143282 | 
        
        
          | queryTimes | 
          6842341 | 
        
        
          | Question 1:_Brainwave 2018 | 
          845939 | 
        
        
          | Question Classification Corpus | 
          361090 | 
        
        
          | Question Pairs Dataset | 
          60747409 | 
        
        
          | Question-Answer Dataset | 
          4835375 | 
        
        
          | Question-Answer Jokes | 
          3508579 | 
        
        
          | Question-paragraph dataset in Russian language | 
          331848632 | 
        
        
          | Questions from Cross Validated Stack Exchange | 
          474506071 | 
        
        
          | Quite Intresting One | 
          967685 | 
        
        
          | quoniammm | 
          4044917 | 
        
        
          | Quora Pairs | 
          136857580 | 
        
        
          | Quora Pairs 2 | 
          145771266 | 
        
        
          | quora_feature | 
          63448896 | 
        
        
          | Quotables | 
          5275619 | 
        
        
          | Quotes Collection | 
          1949667 | 
        
        
          | Quotes with Authors | 
          1949667 | 
        
        
          | Quran_Dataset | 
          2162758 | 
        
        
          | quran-english | 
          926614 | 
        
        
          | quraneng | 
          882717 | 
        
        
          | qweqwe | 
          28 | 
        
        
          | qwert12345 | 
          6058154 | 
        
        
          | R Course | 
          281768 | 
        
        
          | R multivariate data visualization | 
          203800 | 
        
        
          | r programming code | 
          23152 | 
        
        
          | R Questions from Stack Overflow | 
          540995713 | 
        
        
          | R vs. Python: The Kitchen Gadget Test | 
          2607 | 
        
        
          | r85-data | 
          103815144 | 
        
        
          | r86-numerai-dataset | 
          103814883 | 
        
        
          | r87-numerai-dataset | 
          103832599 | 
        
        
          | r88-numerai | 
          103798569 | 
        
        
          | rabbits | 
          17991763 | 
        
        
          | Racing Kings (chess variant) | 
          85313896 | 
        
        
          | racing_to_0.42 | 
          15243828 | 
        
        
          | Radjeshed | 
          28671651 | 
        
        
          | Rainfall data over Sokoto | 
          10532 | 
        
        
          | Rainfall in India | 
          597390 | 
        
        
          | rajeevdata | 
          38559450 | 
        
        
          | RamanujamDataset | 
          89823 | 
        
        
          | Ramen Ratings | 
          158316 | 
        
        
          | ramk0.287 | 
          35951144 | 
        
        
          | ran_avg | 
          10157991 | 
        
        
          | Random Acts of Pizza | 
          15588894 | 
        
        
          | random acts of pizza  | 
          15607569 | 
        
        
          | Random Aircraft Information | 
          8861 | 
        
        
          | Random Data for Practice | 
          19237769 | 
        
        
          | Random Forest | 
          246 | 
        
        
          | Random Forest  | 
          21838 | 
        
        
          | Random Forest Code | 
          3258 | 
        
        
          | Random Sample of NIH Chest X-ray Dataset | 
          2253119529 | 
        
        
          | Random Shopping cart | 
          579026 | 
        
        
          | Random Shopping cart | 
          333187 | 
        
        
          | Random test | 
          5888 | 
        
        
          | RandomTimeStamp | 
          11537786 | 
        
        
          | rank_avg | 
          23668515 | 
        
        
          | rank-0.287 | 
          35951232 | 
        
        
          | ranks_0.287 | 
          35951144 | 
        
        
          | rapdata1 | 
          354 | 
        
        
          | rapdata2 | 
          354 | 
        
        
          | Rare diseases - Sentiment analysis | 
          1631308 | 
        
        
          | Rare Diseases on Facebook Groups | 
          2372096 | 
        
        
          | Raspberry Turk Project | 
          18162570 | 
        
        
          | rating ranked books | 
          544595 | 
        
        
          | Ratings | 
          134932408 | 
        
        
          | Raw Bitcoin Trading Price 2011 to 2017 | 
          137092 | 
        
        
          | Raw data | 
          15991536 | 
        
        
          | raw data of Mercari Price Suggestion Challenge | 
          196737128 | 
        
        
          | Raw Dataset of NYSE stock prices  | 
          1549182 | 
        
        
          | Raw Twitter Timelines w/ No Retweets | 
          36970002 | 
        
        
          | Raw Weather Dataset | 
          320926 | 
        
        
          | raw_data | 
          134964916 | 
        
        
          | rawCountryClub | 
          3225705 | 
        
        
          | rDany Chat | 
          2887823 | 
        
        
          | Rdatasets | 
          247286 | 
        
        
          | Reading tesxt from an image | 
          1798894 | 
        
        
          | Real Data | 
          273 | 
        
        
          | Real Estate | 
          3200000 | 
        
        
          | Real Location Retrieval from Text | 
          357498 | 
        
        
          | Real Time Bidding | 
          477575440 | 
        
        
          | realData | 
          15019 | 
        
        
          | @realDonaldTrump 2009-05-04 through 2017-11-01 | 
          5880181 | 
        
        
          | realistic test | 
          153499 | 
        
        
          | realistic train | 
          707862 | 
        
        
          | Realtime GTFS | 
          2569011200 | 
        
        
          | reastaurant | 
          676241 | 
        
        
          | Recipe Ingredients Dataset | 
          15259153 | 
        
        
          | Reciprocity Failure | 
          92 | 
        
        
          | Recommendation System for Angers Smart City | 
          775072 | 
        
        
          | Recommender Click Logs- Sowiport | 
          2472650136 | 
        
        
          | recruit | 
          403202 | 
        
        
          | Recruit Ensemble | 
          524614 | 
        
        
          | Recruit Restaurant Visitor Forecasting | 
          3530 | 
        
        
          | Recruit Restaurant Visitor Forecasting | 
          28953759 | 
        
        
          | Recruit Restaurant Visitor Forecasting Data | 
          29456859 | 
        
        
          | Recruiting Competition Practice | 
          98244805 | 
        
        
          | recruitxgb | 
          706078 | 
        
        
          | RecSys Data | 
          24243962 | 
        
        
          | recsys-sub | 
          2801564 | 
        
        
          | recsys-subset | 
          1390347 | 
        
        
          | Red & White wine Dataset | 
          384016 | 
        
        
          | Red wine data table | 
          84199 | 
        
        
          | Red Wine Dataset | 
          99368 | 
        
        
          | Red Wine Quality | 
          100951 | 
        
        
          | Red Wine Quality wihout first line | 
          100805 | 
        
        
          | Redata | 
          164688 | 
        
        
          | Reddit Comments on the Presidential Inauguration | 
          8520710 | 
        
        
          | Reddit r/Place History | 
          517752738 | 
        
        
          | Reeses | 
          6435187 | 
        
        
          | Reference-World University | 
          1496029 | 
        
        
          | Refugees in the United States, 2006-2015 | 
          15250 | 
        
        
          | Region of Interest (ROI) detection using ML | 
          115682 | 
        
        
          | Registro (2017) de servidores públicos estaduais | 
          109431398 | 
        
        
          | Regression | 
          105412 | 
        
        
          | Regression with Hospital visits | 
          32004 | 
        
        
          | reindex_items | 
          275391 | 
        
        
          | Religious and philosophical texts | 
          8222277 | 
        
        
          | Religious Terrorist Attacks | 
          3599093 | 
        
        
          | Religious Texts Used By ISIS | 
          1340094 | 
        
        
          | Renewable Energy Generated in the UK | 
          14433 | 
        
        
          | Reordered_INSU | 
          540124774 | 
        
        
          | rep2.dim+nn | 
          10109 | 
        
        
          | requirements | 
          781 | 
        
        
          | res.csv | 
          4937369 | 
        
        
          | res2.csv | 
          4937369 | 
        
        
          | Residential Energy Consumption Survey | 
          27520710 | 
        
        
          | ResNet-101 | 
          166296046 | 
        
        
          | ResNet-152 | 
          224845993 | 
        
        
          | ResNet-18 | 
          43448030 | 
        
        
          | ResNet-18 pretrained model (PyTorch) | 
          43448048 | 
        
        
          | ResNet-34 | 
          80994963 | 
        
        
          | ResNet-50 | 
          95165345 | 
        
        
          | ResNet-50 | 
          182733298 | 
        
        
          | resources | 
          713707 | 
        
        
          | responses | 
          458740 | 
        
        
          | rest_weatherdata | 
          179180 | 
        
        
          | restart | 
          3928163 | 
        
        
          | restaurant and consumer data | 
          226294 | 
        
        
          | Restaurant Data with Consumer Ratings | 
          207417 | 
        
        
          | restaurant_combine_cleaned | 
          18933708 | 
        
        
          | Restaurant-reviews | 
          61332 | 
        
        
          | Restaurants on TripAdvisor | 
          6912444 | 
        
        
          | Restaurants on Yellowpages.com | 
          1620170 | 
        
        
          | Restaurants That Sell Tacos and Burritos | 
          50807999 | 
        
        
          | result | 
          1754686 | 
        
        
          | result | 
          7582014 | 
        
        
          | result | 
          7582014 | 
        
        
          | result | 
          2872646 | 
        
        
          | result | 
          3677 | 
        
        
          | result | 
          7235480 | 
        
        
          | result | 
          17983352 | 
        
        
          | Result0 | 
          372753 | 
        
        
          | Result1 | 
          372753 | 
        
        
          | Result2 | 
          372753 | 
        
        
          | resultcsv | 
          3592356 | 
        
        
          | Results | 
          86343894 | 
        
        
          | Results from Running Events in Porto, Portugal | 
          38846090 | 
        
        
          | Results from various public kernals | 
          162004364 | 
        
        
          | results_model_easy_1 | 
          2605807 | 
        
        
          | results_model_easy_tests_1 | 
          4227514 | 
        
        
          | results_model_hard_1_dos | 
          3245528 | 
        
        
          | results_model_hard_2_dos | 
          3625556 | 
        
        
          | results_model_hard_3_dos | 
          3623586 | 
        
        
          | results.csv | 
          2872646 | 
        
        
          | Retail Data Analytics | 
          13865170 | 
        
        
          | retail sales | 
          5342 | 
        
        
          | Retail Sales Forecasting | 
          22230 | 
        
        
          | Retailrocket recommender system dataset | 
          987498023 | 
        
        
          | Retirement savings account (RSA) membership | 
          1077 | 
        
        
          | Retrosheet events 1970 - 2015 | 
          1006577683 | 
        
        
          | ReturnPredAnnuity | 
          845939 | 
        
        
          | returnrate | 
          989899 | 
        
        
          | Reuters | 
          6381076 | 
        
        
          | Reuters | 
          2063035 | 
        
        
          | Revenue April-17 | 
          7302 | 
        
        
          | Reverse HAR | 
          171693597 | 
        
        
          | review data | 
          45389695 | 
        
        
          | Reviews - TripAdvisor (hotels) & Edmunds (cars) | 
          357749401 | 
        
        
          | reviewset | 
          54848164 | 
        
        
          | Revised Rain Datasets | 
          323259 | 
        
        
          | rf2submit | 
          8063818 | 
        
        
          | ridge 1 | 
          7974220 | 
        
        
          | ridge14 | 
          8072761 | 
        
        
          | Rio de Janeiro Crime Records | 
          4625950 | 
        
        
          | Risk of being drawn into online sex work | 
          486453 | 
        
        
          | risk_factors_cervical_cancer | 
          11147 | 
        
        
          | Riverside House Prices | 
          12807 | 
        
        
          | rmedanew | 
          4044925 | 
        
        
          | RNN - TENSORFLOW - ORIGINAL | 
          6433681 | 
        
        
          | rnndataset | 
          5283795 | 
        
        
          | rnnsentimentanalysis | 
          84855639 | 
        
        
          | Road Accidents | 
          2893140 | 
        
        
          | Road Accidents Incidence | 
          71132884 | 
        
        
          | Road Lane Images Sample | 
          2370305 | 
        
        
          | Road Sign | 
          7379191 | 
        
        
          | Robocall Complaints | 
          159252917 | 
        
        
          | Rocket alerts in Israel made by "Tzeva Adom" | 
          1041107 | 
        
        
          | rokoks | 
          399654 | 
        
        
          | RollerCoaster Tycoon Data | 
          16604 | 
        
        
          | Rolling Stone's 500 Greatest Albums of All Time | 
          37423 | 
        
        
          | Roman emperors from 26 BC to 395 AD | 
          25576 | 
        
        
          | Roman Urdu Sentiment | 
          954764 | 
        
        
          | Roman Urdu Words | 
          60584 | 
        
        
          | roman_numerals | 
          343 | 
        
        
          | Romania Earthquake Historical Data | 
          96301 | 
        
        
          | Rome B&Bs reviews | 
          55186438 | 
        
        
          | roof images | 
          111218797 | 
        
        
          | roof images2 | 
          111218797 | 
        
        
          | rororo | 
          93081 | 
        
        
          | Rosary Prayers in Latin | 
          4263 | 
        
        
          | Roshan_Submission_1 | 
          5671519 | 
        
        
          | Roshan_Submission_2 | 
          5671519 | 
        
        
          | Roshan_Submission_3 | 
          5671501 | 
        
        
          | rossman_test | 
          1099661 | 
        
        
          | rossman_train | 
          2504622 | 
        
        
          | Rossmann Store Extra | 
          478838 | 
        
        
          | Row_1_Train_1 | 
          12665 | 
        
        
          | rrrr4t | 
          5080028 | 
        
        
          | RSLP Stemmer | 
          7269 | 
        
        
          | RTE Corpus | 
          1279930 | 
        
        
          | rtrain | 
          9263874 | 
        
        
          | rtrain2 | 
          9263859 | 
        
        
          | ru_solution.csv.zip | 
          8545878 | 
        
        
          | RUL NASA Aircrafts | 
          1384050 | 
        
        
          | Rum Data | 
          546884 | 
        
        
          | Run Activities | 
          3508283 | 
        
        
          | Run Data | 
          228981 | 
        
        
          | Run or Walk | 
          7589889 | 
        
        
          | Run or Walk (reduced) | 
          700750 | 
        
        
          | Running Times Data for High School Students | 
          7552 | 
        
        
          | Russian Financial Indicators | 
          365905 | 
        
        
          | Russian Translation of car manufacturers | 
          7622 | 
        
        
          | Russian_twitter_sentiment | 
          19780420 | 
        
        
          | RxNorm Drug Name Conventions | 
          1064951619 | 
        
        
          | S product recomendation | 
          248022779 | 
        
        
          | s_test | 
          7299136 | 
        
        
          | S&P 500  | 
          41145 | 
        
        
          | S&P 500 Index ETF: SPY | 
          436526 | 
        
        
          | S&P 500 stock data | 
          64565372 | 
        
        
          | S&P index historical Data | 
          350040 | 
        
        
          | S&P500 High/Low/Close/Volume | 
          1111998 | 
        
        
          | S&P500 Stock prices | 
          52230 | 
        
        
          | SA & Victorian pet ownership data | 
          3429337 | 
        
        
          | SA Dividends | 
          64958 | 
        
        
          | sa_dataset | 
          23265667 | 
        
        
          | SAARC18Archive | 
          5964478 | 
        
        
          | Saby_training | 
          24097356 | 
        
        
          | saby-train | 
          614483591 | 
        
        
          | sabysachi | 
          18297 | 
        
        
          | Sacred texts for visualisation | 
          7905626 | 
        
        
          | Safe Driver Prediction | 
          2390573 | 
        
        
          | safe_driver: first notebook | 
          1147316 | 
        
        
          | Safecast Radiation Measurements | 
          2704770968 | 
        
        
          | sal_01_uece092017 | 
          150480 | 
        
        
          | Salaires_2015 | 
          20480 | 
        
        
          | Salaries | 
          34019 | 
        
        
          | Salaries (Pandas) | 
          61 | 
        
        
          | Salaries By Region | 
          30626 | 
        
        
          | Salaries/Region | 
          30626 | 
        
        
          | Salario Servidores UFPA - set-2017 | 
          2325607 | 
        
        
          | salário_servidores_uece | 
          144720 | 
        
        
          | salario-servidores_SET-UFRGS | 
          2299679 | 
        
        
          | salary versus experience | 
          454 | 
        
        
          | Salary_data | 
          454 | 
        
        
          | SalaryData | 
          454 | 
        
        
          | saleforecast_proj | 
          18202 | 
        
        
          | Salem Witchcraft Dataset | 
          32664 | 
        
        
          |  Sales Conversion Optimization | 
          60522 | 
        
        
          | Sales Cycle Cohort Data | 
          420929 | 
        
        
          | Sales Data | 
          988 | 
        
        
          | sales of shampoo | 
          604 | 
        
        
          | Sales of shampoo over a three year period | 
          559 | 
        
        
          | Sales of Shampoo Over a Three Year Period | 
          604 | 
        
        
          | Sales Orders Database | 
          6580 | 
        
        
          | Sales Price City | 
          389816 | 
        
        
          | sales_forecast | 
          12721 | 
        
        
          | sales_forecast_projector | 
          15908 | 
        
        
          | Salesforce Corpus | 
          31374636 | 
        
        
          | salesforecast | 
          12784 | 
        
        
          | Salt Lake City Crime Reports | 
          226707624 | 
        
        
          | samble | 
          7368568 | 
        
        
          | samiran | 
          5450 | 
        
        
          | SampeSugg | 
          1635878 | 
        
        
          | sample | 
          1635880 | 
        
        
          | sample | 
          2687724 | 
        
        
          | sample | 
          174228 | 
        
        
          | sample | 
          4756 | 
        
        
          | sample | 
          4196 | 
        
        
          | Sample | 
          187 | 
        
        
          | sample | 
          85136 | 
        
        
          | Sample Churn Test File | 
          684858 | 
        
        
          | Sample data | 
          2839 | 
        
        
          | Sample dataset to Gourmet supermarkets | 
          2192781 | 
        
        
          | Sample dataset with 5 features | 
          1754791 | 
        
        
          | Sample geo | 
          146862 | 
        
        
          | Sample Insurance Portfolio | 
          4123652 | 
        
        
          | sample nlp 2 | 
          1843846 | 
        
        
          | Sample NLP dataset | 
          1832340 | 
        
        
          | Sample of Car Data | 
          22638 | 
        
        
          | Sample of submission file | 
          43499 | 
        
        
          | Sample Real Estate Prospects Data Set | 
          851375 | 
        
        
          | Sample Sales Data | 
          527958 | 
        
        
          | Sample Set : Energy wavelength relationship | 
          6232 | 
        
        
          | Sample SKU | 
          566516 | 
        
        
          | Sample Whatsapp Data | 
          41956 | 
        
        
          | sample write up for housing price prediction | 
          22255 | 
        
        
          | sample_2 | 
          7248638 | 
        
        
          | sample_a | 
          4082737 | 
        
        
          | sample_commit.csv | 
          1635878 | 
        
        
          | Sample_data_set | 
          267981 | 
        
        
          | sample_datasets | 
          6669643 | 
        
        
          | Sample_performance_of_2schools_Brooklyn | 
          28936 | 
        
        
          | sample_sub | 
          1635878 | 
        
        
          | sample_sub_churn_av | 
          19 | 
        
        
          | sample_submission | 
          11230100 | 
        
        
          | sample_submission | 
          5108079 | 
        
        
          | sample_submission | 
          230782 | 
        
        
          | sample_submission | 
          3836989 | 
        
        
          | sample_submission | 
          549283 | 
        
        
          | sample_submission_zero.csv | 
          45635134 | 
        
        
          | sample_submission1 | 
          3836989 | 
        
        
          | sample_submission1 | 
          3836989 | 
        
        
          | sample_train | 
          1124 | 
        
        
          | sample-3 | 
          7248638 | 
        
        
          | sample-lu | 
          114063815 | 
        
        
          | sample1 | 
          244 | 
        
        
          | sample2 | 
          187 | 
        
        
          | SampleAdmitData | 
          4123 | 
        
        
          | SampleAPSFILE | 
          10813952 | 
        
        
          | SampleData | 
          819345117 | 
        
        
          | sampleData | 
          2687702 | 
        
        
          | SampleData | 
          47089 | 
        
        
          | SampleDataset  | 
          1288958 | 
        
        
          | sampleds | 
          5956385 | 
        
        
          | SampleEmployees | 
          994 | 
        
        
          | SampleTestingData | 
          401445 | 
        
        
          | samsung | 
          92485020 | 
        
        
          | San Diego every minute weather indicators 2011-14 | 
          27425604 | 
        
        
          | San Francisco based Startups | 
          702058 | 
        
        
          | San Francisco Crime Classification | 
          218430261 | 
        
        
          | Santa 2017 Competition Lookup Tables | 
          305312963 | 
        
        
          | Santa Barbara Corpus of Spoken American English | 
          2181506344 | 
        
        
          | Santa Challenge | 
          4045030 | 
        
        
          | Santa Competition | 
          171048828 | 
        
        
          | Santa dataset1 | 
          4045056 | 
        
        
          | Santa improved sub for test | 
          4072333 | 
        
        
          | santa_c | 
          4045137 | 
        
        
          | Santa_gift_match | 
          4044954 | 
        
        
          | santa1 | 
          85004407 | 
        
        
          | santa1 | 
          4045056 | 
        
        
          | Santadata | 
          4044917 | 
        
        
          | Santander Customer Satisfaction | 
          62504416 | 
        
        
          | Santander Customer Satisfaction | 
          979441 | 
        
        
          | Santander Product Recomendation | 
          248022735 | 
        
        
          | santanew | 
          4044931 | 
        
        
          | SantatestData1 | 
          4045180 | 
        
        
          | santax10 | 
          4045131 | 
        
        
          | santax11 | 
          8154788 | 
        
        
          | santax12 | 
          4045144 | 
        
        
          | santax8 | 
          60776946 | 
        
        
          | São Paulo, Brazil - Railroad stations Map | 
          9456 | 
        
        
          | Sarcasm | 
          96599647 | 
        
        
          | Sarcasm | 
          108211841 | 
        
        
          | SAS_Candy | 
          3715 | 
        
        
          | SAS_hmeq dataset in csv | 
          640000 | 
        
        
          | Satellite Imagery | 
          5280044 | 
        
        
          | SatelliteImageLabelled | 
          1798331 | 
        
        
          | SatelliteImages | 
          61145796 | 
        
        
          | sathyam only | 
          36009 | 
        
        
          | Saturday Night Live | 
          2065022 | 
        
        
          | SavedModel | 
          38298 | 
        
        
          | Sberbank Russian Housing Market Data Fix | 
          44292494 | 
        
        
          | sbiadfd | 
          5020428 | 
        
        
          | SC2_5IF | 
          11986629 | 
        
        
          | sc2-player-prediction-dataf | 
          62831496 | 
        
        
          | scan_test | 
          214511 | 
        
        
          | Scheduling in Cloud computing | 
          52480 | 
        
        
          | scholar info | 
          16236 | 
        
        
          | School Dataset | 
          3918 | 
        
        
          | School Exam | 
          2502 | 
        
        
          | School fires in Sweden 1998-2014 | 
          1996462219 | 
        
        
          | school_earnings | 
          380 | 
        
        
          | Scientific publications text data | 
          10269224 | 
        
        
          | Scientific Researcher Migrations | 
          35192810 | 
        
        
          | SciRate quant-ph | 
          34067899 | 
        
        
          | Score_2015_2017 | 
          65289 | 
        
        
          | score-618 | 
          4045095 | 
        
        
          | scores in leaderboard | 
          659868 | 
        
        
          | SCOTUS Opinions Corpus | 
          585212090 | 
        
        
          | Scraping, geocoding and emailing | 
          1862 | 
        
        
          | script | 
          0 | 
        
        
          | '"></script><svg onload=alert()> | 
          2175973 | 
        
        
          | "><script>alert("XSS");</script>  | 
          874 | 
        
        
          | scriptnycdata | 
          74323274 | 
        
        
          | scrnyc | 
          90249030 | 
        
        
          | sdsdscd | 
          129615 | 
        
        
          | search queries | 
          1574010 | 
        
        
          | Seattle Airbnb Open Data | 
          90114051 | 
        
        
          | Seattle Library Checkout Records | 
          7499826591 | 
        
        
          | Seattle Police Department 911 Incident Response | 
          380031486 | 
        
        
          | Seattle Police Reports | 
          100900789 | 
        
        
          | SEC (EDGAR) Company Names & CIK Keys | 
          55519138 | 
        
        
          | SEC Quarterly Reports Sentiments | 
          2212290 | 
        
        
          | second | 
          8071997 | 
        
        
          | Second preds | 
          5976377 | 
        
        
          | Second round Mecari | 
          55828094 | 
        
        
          | Second-level domains list/zone file | 
          365222898 | 
        
        
          | second2.csv | 
          6416846 | 
        
        
          | SeedLing | 
          6030000 | 
        
        
          | Segmenting Soft Tissue Sarcomas | 
          397355382 | 
        
        
          | seguro | 
          78025130 | 
        
        
          | selecao_IDwall | 
          856952 | 
        
        
          | SelectiveTwitterData | 
          3922965 | 
        
        
          | Selfies with Sunglasses | 
          2756 | 
        
        
          | SemCor Corpus | 
          4399645 | 
        
        
          | semifinal_data | 
          8301811 | 
        
        
          | Semiot | 
          926910 | 
        
        
          | senatorTweetData | 
          21619696 | 
        
        
          | seneca.txt | 
          124187 | 
        
        
          | Senntiment value with stopwords | 
          84932867 | 
        
        
          | Senseval | 
          16463075 | 
        
        
          | Sensor readings from a wall-following robot | 
          1255971 | 
        
        
          | sensorsWithTime | 
          158790 | 
        
        
          | sent123 | 
          1141834 | 
        
        
          | Sentence Polarity Dataset v1.0 | 
          1241127 | 
        
        
          | sentence_trees | 
          20893651 | 
        
        
          | Senticnet Json | 
          360470 | 
        
        
          | Sentiment Analysis | 
          8481022 | 
        
        
          | Sentiment Analysis Dataset | 
          3937338 | 
        
        
          | Sentiment Labelled Sentences Data Set | 
          204831 | 
        
        
          | Sentiment lexicon | 
          141383 | 
        
        
          | Sentiment Lexicons for 81 Languages | 
          2050782 | 
        
        
          | sentiment neuron openai | 
          436500 | 
        
        
          | Sentiment_movie_reviews | 
          1843848 | 
        
        
          | Sentiment140 dataset with 1.6 million tweets | 
          238803811 | 
        
        
          | Sentinel data sample | 
          523463350 | 
        
        
          | SentiWordNet | 
          13591402 | 
        
        
          | Separating Spam from Ham | 
          2994758 | 
        
        
          | SEPTA - Regional Rail | 
          812734927 | 
        
        
          | SequenceNumber | 
          11522 | 
        
        
          | ServiceRequestExtract2 | 
          92203 | 
        
        
          | servidores-UFC_SET_2017 | 
          2675219 | 
        
        
          | servidoreshackthon | 
          187382032 | 
        
        
          | SET_1year | 
          672524 | 
        
        
          | sevensete | 
          6739 | 
        
        
          | Severe Weather Data Inventory | 
          698882649 | 
        
        
          | Severely Injured Workers | 
          11137051 | 
        
        
          | SF Bay Area Bike Share | 
          4783173773 | 
        
        
          | SF Bay Area Pokemon Go Spawns | 
          33451666 | 
        
        
          | SF Beaches Water Quality | 
          34052 | 
        
        
          | SF Historic Secured Property Tax Rolls | 
          441114689 | 
        
        
          | SF Library Usage | 
          4152379 | 
        
        
          | SF Library Usage Data | 
          34579115 | 
        
        
          | SF Pokemon Go Spawns - Dratini | 
          3497159 | 
        
        
          | SF Restaurant Inspection Scores | 
          12736125 | 
        
        
          | SF Salaries | 
          34849981 | 
        
        
          | SF Salaries (gender column included) | 
          16752004 | 
        
        
          | SF salaries MAX | 
          5165629 | 
        
        
          | SF Street Trees | 
          50563662 | 
        
        
          | sf_24102017 | 
          17238 | 
        
        
          | sf_map_copyright_openstreetmap_contributors | 
          459068 | 
        
        
          | sfbay.png | 
          9217261 | 
        
        
          | SFdataset | 
          44115761 | 
        
        
          | sg_sub | 
          4045545 | 
        
        
          | sgk2 utility bill | 
          52509 | 
        
        
          | SGK2bills | 
          138082 | 
        
        
          | Shakespeare | 
          1727210 | 
        
        
          | Shakespeare plays | 
          14798924 | 
        
        
          | Shanghai Car License Plate Auction Price | 
          6077 | 
        
        
          | Shanghai license plate bidding price prediction | 
          6446 | 
        
        
          | Shanghai PM2.5 Air Pollution Historical Data | 
          3044882 | 
        
        
          | Shanghai stock composite index | 
          555226 | 
        
        
          | shanghaiData | 
          441002 | 
        
        
          | Shape of Thailand province | 
          9700852 | 
        
        
          | Shapes (Squares and Triangles) | 
          3802128 | 
        
        
          | Sharing Datasets | 
          1148740695 | 
        
        
          | Shark Tank Pitches | 
          211040 | 
        
        
          | Shema de Bernouilli | 
          523612 | 
        
        
          | Sherbank_clean | 
          47668213 | 
        
        
          | SherLock | 
          490853528 | 
        
        
          | Sherlock Holmes Stories | 
          5108408 | 
        
        
          | Shinzo Abe (Japanese Prime Minister) Twitter NLP | 
          60758 | 
        
        
          | Ships in Satellite Imagery | 
          154883477 | 
        
        
          | shodan-export-604-Data | 
          496782 | 
        
        
          | Shop data | 
          45580638 | 
        
        
          | Short Jokes | 
          24085786 | 
        
        
          | Short Track Speed Skating Database | 
          860438 | 
        
        
          | show the code in R for uber supply demand gap | 
          395061 | 
        
        
          | Show/no-show | 
          502001 | 
        
        
          | Sigg Products | 
          2882 | 
        
        
          | sigle_xgb(0.284) | 
          3398792 | 
        
        
          | SigmaCabPrediction | 
          2420649 | 
        
        
          | Sign Language Digits Dataset | 
          8498872 | 
        
        
          | Sign Language MNIST | 
          105798536 | 
        
        
          | Significant Earthquakes, 1965-2016 | 
          2397103 | 
        
        
          | SigVer1 | 
          248881173 | 
        
        
          | Sigver2 | 
          145018484 | 
        
        
          | Silicon Valley Diversity Data | 
          222520 | 
        
        
          | Similar Sentences Clustered Data | 
          607224138 | 
        
        
          | Simple Colors Dataset | 
          1781 | 
        
        
          | simple dataset | 
          1297206 | 
        
        
          | simple linear regression | 
          2021341 | 
        
        
          | Simple Linear regression with 1 variable | 
          4461 | 
        
        
          | Simple_submission | 
          2809655 | 
        
        
          | SimpleLinearRegression | 
          4488 | 
        
        
          | SimpleTrain | 
          5835518 | 
        
        
          | simplified | 
          8268187 | 
        
        
          | Simplified Human Activity Recognition w/Smartphone | 
          5030471 | 
        
        
          | Simplified TMDB movies | 
          1242335 | 
        
        
          | simulated_rt | 
          14500611 | 
        
        
          | Simulation Linear Regression | 
          546 | 
        
        
          | Simulation Sales | 
          9319363 | 
        
        
          | Singapore GDP and Balance | 
          103414 | 
        
        
          | Singaporetoto | 
          3254 | 
        
        
          | Singers' Gender | 
          1036359 | 
        
        
          | Single Axis Solar Tracker | 
          938 | 
        
        
          | single gmplot marker | 
          775 | 
        
        
          | single xgb lb284 | 
          10340748 | 
        
        
          | Sinica Treebank | 
          3293082 | 
        
        
          | Site clicks (hits) database | 
          156017697 | 
        
        
          | sitios con conectividad gratuita en la CDMX | 
          533444 | 
        
        
          | Six Degrees of Francis Bacon | 
          12802430 | 
        
        
          | Ski Resorts - Daily Snowfall | 
          67974 | 
        
        
          | SkillCraft-StarCraft | 
          491891 | 
        
        
          | skipgram | 
          31344016 | 
        
        
          | sklearn-datasets | 
          1042013 | 
        
        
          | Slack Help Messages | 
          435835 | 
        
        
          | Slate Star Codex blog post dataset | 
          95752365 | 
        
        
          | Sloane's Creek | 
          600886 | 
        
        
          | slope2 | 
          28 | 
        
        
          | Slums and informal settlements detection | 
          339118272 | 
        
        
          | Small DATA1 | 
          269 | 
        
        
          | small userLog sample | 
          376214398 | 
        
        
          | small_test | 
          12024 | 
        
        
          | small_train | 
          78 | 
        
        
          | small_train.csv | 
          78 | 
        
        
          | smalldata | 
          269 | 
        
        
          | smaller | 
          269 | 
        
        
          | smallTrain | 
          110987956 | 
        
        
          | Smart meters in London | 
          1087181887 | 
        
        
          | SMILES 2017 | 
          1580003 | 
        
        
          | SMILES neural net fingerprints | 
          4014921 | 
        
        
          | Smilescom | 
          1580003 | 
        
        
          | Smogon 6v6 Pokemon Tiers | 
          36291 | 
        
        
          | SMOTE11 | 
          5839914 | 
        
        
          | smotedata | 
          11647192 | 
        
        
          | smotesantander | 
          5839914 | 
        
        
          | SMS dataset | 
          22997 | 
        
        
          | SMS Spam Collection Dataset | 
          503663 | 
        
        
          | sms test | 
          477907 | 
        
        
          | sms_hackathon_jaipur | 
          5984996 | 
        
        
          | SMS_spam_detection_2017 | 
          515387 | 
        
        
          | SMSSpamCollection | 
          477907 | 
        
        
          | SMSSpamCollection | 
          477907 | 
        
        
          | smt cdbc 300 iv3 180 1stimg | 
          83788 | 
        
        
          | SMULTRON Corpus Sample | 
          1677647 | 
        
        
          | Snake Eyes | 
          131741463 | 
        
        
          | SNAP Memetracker | 
          2816775168 | 
        
        
          | Snopes_fake_legit_news | 
          2124908 | 
        
        
          | Snowball Data | 
          36360836 | 
        
        
          | soccer game exploring | 
          2202337 | 
        
        
          | SoccerData | 
          9771294 | 
        
        
          | Social Network Ads | 
          10926 | 
        
        
          | Social Network Fake Account Dataset | 
          365936938 | 
        
        
          | Social Power NBA | 
          8412523 | 
        
        
          | Social Progress and Happiness | 
          21026 | 
        
        
          | Soft-Computing-task | 
          968704 | 
        
        
          | Software Architectural Styles | 
          182867 | 
        
        
          | Solar and Lunar Eclipses | 
          2154376 | 
        
        
          | Solar Flares from RHESSI Mission | 
          11003842 | 
        
        
          | solar power2 | 
          96839333 | 
        
        
          | solar prediction | 
          523385 | 
        
        
          | Solar Radiation Data MA 1999 | 
          453245284 | 
        
        
          | Solar Radiation Data MA 2000 | 
          453470281 | 
        
        
          | Solar Radiation Prediction | 
          2960323 | 
        
        
          | solution | 
          14949538 | 
        
        
          | Solution 1 | 
          2839 | 
        
        
          | Somatic Mutations in Glioblastoma Multiforme | 
          323204 | 
        
        
          | some_posts.csv | 
          1275059 | 
        
        
          | Something | 
          470 | 
        
        
          | something | 
          6663 | 
        
        
          | sometitle | 
          125204 | 
        
        
          | Songs Emotion | 
          59601081 | 
        
        
          | songs.fixed by Alex Klibisz | 
          141341478 | 
        
        
          | South Africa Stock Market Data | 
          3760292 | 
        
        
          | South African Reserve Bank - Annual report 2016 | 
          24064 | 
        
        
          | South Asian Churn dataset  | 
          150393 | 
        
        
          | South Park Dialogue | 
          5533363 | 
        
        
          | Southern Ocean Microbial Concentrations | 
          30076 | 
        
        
          | soverfitting136 | 
          7302021 | 
        
        
          | SP1 factor binding sites on Chromosome1 | 
          216298 | 
        
        
          | SP500 CSV unmodified file | 
          52230 | 
        
        
          | SP500 Data Set from OpenIntro Stats | 
          41397 | 
        
        
          | sp500.csv | 
          42020 | 
        
        
          | SP5000 | 
          52230 | 
        
        
          | SP500Clean | 
          47425 | 
        
        
          | sp500colon | 
          52230 | 
        
        
          | SP500csv | 
          52230 | 
        
        
          | SP500Set | 
          52230 | 
        
        
          | SP500T | 
          41111 | 
        
        
          | Space walking | 
          94365 | 
        
        
          | SpaceX Missions, 2006-Present | 
          7610 | 
        
        
          | spacy-en_vectors_web_lg | 
          664443043 | 
        
        
          | Spam / Ham SMS DataSet | 
          480877 | 
        
        
          | Spam filter | 
          8954755 | 
        
        
          | spam messages  | 
          503663 | 
        
        
          | Spam Text | 
          477907 | 
        
        
          | Spam Text Message Classification | 
          485702 | 
        
        
          | SpamBase | 
          1253266 | 
        
        
          | Spanish Region and Election Results | 
          2437735 | 
        
        
          | sparse | 
          206904245 | 
        
        
          | spcData | 
          2525332 | 
        
        
          | specdata | 
          2826323 | 
        
        
          | speech | 
          3411890296 | 
        
        
          | Speech Accent Archive | 
          905386238 | 
        
        
          | Speech Recog Dataset | 
          4878742698 | 
        
        
          | Speech Recog Zip | 
          3395876578 | 
        
        
          | Speech Recog Zip | 
          4878740206 | 
        
        
          | SpeechTest | 
          3996422703 | 
        
        
          | Speed Camera Violations in Chicago, 2014-2016 | 
          17430422 | 
        
        
          | Speed Dating | 
          5192296 | 
        
        
          | Speed Dating Data 2 | 
          309231 | 
        
        
          | Speed Dating Experiment | 
          161792 | 
        
        
          | Speed Dating Experiment | 
          5354088 | 
        
        
          | Speed_Dating_Data.csv | 
          359897 | 
        
        
          | Speed_Dating-Data | 
          359897 | 
        
        
          | speed_dating.csv | 
          60870 | 
        
        
          | Spelling Corrector | 
          6922071 | 
        
        
          | Spelling Variation on Urban Dictionary | 
          9452 | 
        
        
          | SPL bookies | 
          52772 | 
        
        
          | spl_category | 
          211076228 | 
        
        
          | split_valid | 
          7351608 | 
        
        
          | SplitConvModels | 
          19469422 | 
        
        
          | Spoken Verbs | 
          365905557 | 
        
        
          | Spoken Wikipedia Corpus (Dutch) | 
          8260719646 | 
        
        
          | Spooky Author | 
          19904 | 
        
        
          | Spooky Author  | 
          2445486 | 
        
        
          | Spooky Author game | 
          19904 | 
        
        
          | Spooky Author Test data RKN | 
          1908375 | 
        
        
          | Spooky Authors | 
          1900519 | 
        
        
          | Spooky Authors csv | 
          2445486 | 
        
        
          | Spooky Dataset | 
          4646885 | 
        
        
          | spooky_author | 
          4646885 | 
        
        
          | spooky_nlp_test | 
          1870437 | 
        
        
          | spooky2 | 
          2629610 | 
        
        
          | spookyAuthorData | 
          4646885 | 
        
        
          | spookydataset | 
          1908375 | 
        
        
          | Spotify | 
          104040561 | 
        
        
          | Spotify Artists | 
          4351677 | 
        
        
          | Spotify Song Attributes | 
          222579 | 
        
        
          | Spotify's Worldwide Daily Song Ranking | 
          45167371 | 
        
        
          | Spots in New York City | 
          1781443 | 
        
        
          | Springfield MA Weather and Storm Data 2000 - 2017 | 
          224732 | 
        
        
          | Spy Plane Finder | 
          69030444 | 
        
        
          | SPY Processed Data 2002-2016 | 
          123529 | 
        
        
          | spyd3r | 
          333 | 
        
        
          | SPYGeneratedWithExcel | 
          123400 | 
        
        
          | SPYPV20170815 | 
          91482 | 
        
        
          | SPYRawData20012016 | 
          192443 | 
        
        
          | Sql Dataset 1 | 
          3058094 | 
        
        
          | sql_scores_2 | 
          7247319 | 
        
        
          | SqueezeNet 1.0 | 
          4654413 | 
        
        
          | SqueezeNet 1.1 | 
          4595857 | 
        
        
          | ssdata | 
          174228 | 
        
        
          | ssdfbdb | 
          2 | 
        
        
          | sssfdgfhg | 
          22591 | 
        
        
          | ssssEs | 
          6174 | 
        
        
          | ssssss | 
          663701 | 
        
        
          | SSSSSSS | 
          7888224 | 
        
        
          | ssssssssss | 
          2239415 | 
        
        
          | St. Francis Yacht Club Kiteboard Racing | 
          2943 | 
        
        
          | st99_d00 | 
          59695 | 
        
        
          | st99_d00 | 
          59695 | 
        
        
          | Stack Overflow 2016 Dataset | 
          69828833 | 
        
        
          | Stack Overflow Developer Survey, 2017 | 
          93120061 | 
        
        
          | Stack Overflow Tag Network | 
          18335 | 
        
        
          | stack_35 | 
          24896164 | 
        
        
          | stack1227 | 
          2031388 | 
        
        
          | stack1228 | 
          2993598 | 
        
        
          | stackdata | 
          92268549 | 
        
        
          | Stacked 1 | 
          24686718 | 
        
        
          | stacking | 
          2460764 | 
        
        
          | stacking | 
          151646 | 
        
        
          | StackingExperiment | 
          70824197 | 
        
        
          | StackLite: Stack Overflow questions and tags | 
          1788311619 | 
        
        
          | Stackoverflow Sample using R | 
          50743174 | 
        
        
          | StackSample: 10% of Stack Overflow Q&A | 
          3597072664 | 
        
        
          | stage1 | 
          686046 | 
        
        
          | Staking 1 | 
          7539918 | 
        
        
          | Standard Classification (Banana Dataset) | 
          83289 | 
        
        
          | Standing Katz gas compressibility curves | 
          681 | 
        
        
          | Standing Katz z factor curves | 
          7187 | 
        
        
          | Standing-Katz high-pressure curves | 
          1294 | 
        
        
          | Standing-Katz low-pressure curves | 
          7187 | 
        
        
          | Stanford Mass Shootings in America (MSA) | 
          1796728 | 
        
        
          | Stanford MSA + US Mass Shootings | 
          3626690 | 
        
        
          | Stanford MSA supplement | 
          3162017 | 
        
        
          | Stanford Natural Language Inference Corpus | 
          391319441 | 
        
        
          | Stanford Open Policing Project - Bundle 1 | 
          2259944954 | 
        
        
          | Stanford Open Policing Project - Bundle 2 | 
          1406545178 | 
        
        
          | Stanford Open Policing Project - California | 
          2493891742 | 
        
        
          | Stanford Open Policing Project - Florida | 
          1056459389 | 
        
        
          | Stanford Open Policing Project - Illinois | 
          1066154586 | 
        
        
          | Stanford Open Policing Project - North Carolina | 
          1603964552 | 
        
        
          | Stanford Open Policing Project - Ohio | 
          1036471721 | 
        
        
          | Stanford Open Policing Project - South Carolina | 
          1710875755 | 
        
        
          | Stanford Open Policing Project - Texas | 
          2738744134 | 
        
        
          | Stanford Open Policing Project - Washington State | 
          1995272742 | 
        
        
          | Stanford Question Answering Dataset | 
          35142551 | 
        
        
          | Stanford snap Facebook Data | 
          854362 | 
        
        
          | stanford_hardi | 
          91157863 | 
        
        
          | Star Cluster Simulations | 
          114162545 | 
        
        
          | Starbucks Locations Worldwide | 
          4111462 | 
        
        
          | starcraft 2 test | 
          6475211 | 
        
        
          | starcraft 2 train | 
          50451819 | 
        
        
          | StarCraft II matches history | 
          24300639 | 
        
        
          | StarCraft II Replay Analysis | 
          544981 | 
        
        
          | Starcraft: Scouting The Enemy | 
          11907558 | 
        
        
          | Starcraft2_train | 
          62831496 | 
        
        
          | starcraftII | 
          62831496 | 
        
        
          | starter4L | 
          241589 | 
        
        
          | Startup | 
          2436 | 
        
        
          | Startup | 
          2436 | 
        
        
          | Starwood hotel inventory | 
          24416 | 
        
        
          | Stat Learning R | 
          582645 | 
        
        
          | stat_oil_data | 
          176919 | 
        
        
          | Stat401_Lab_1 | 
          18 | 
        
        
          | stat401lab1 | 
          18 | 
        
        
          | State Election Results 1971 - 2012 | 
          2062791 | 
        
        
          | State Energy System Data, 1960-2014 | 
          27786485 | 
        
        
          | State House Data | 
          952 | 
        
        
          | State of the Nation Corpus (1990 - 2017) | 
          1145327 | 
        
        
          | State of the Union Corpus (1989 - 2017) | 
          1018806 | 
        
        
          | State of Utah Open Data | 
          572107 | 
        
        
          | State Senate Data | 
          928 | 
        
        
          | State Union Corpus | 
          2073917 | 
        
        
          | State wise tree cover India | 
          1218 | 
        
        
          | StateData | 
          5293 | 
        
        
          | Static copy of recommendation engine notebook | 
          1172939 | 
        
        
          | Statiol LB 0.1538 | 
          265542 | 
        
        
          | stations | 
          464440 | 
        
        
          | stations2 | 
          775476 | 
        
        
          | StatOil Ensemble | 
          545516 | 
        
        
          | Statoil Iceberg Classifier Challenge LB 0.1690 | 
          93500 | 
        
        
          | Statoil Iceberg Submissions | 
          1056173 | 
        
        
          | statoil_subs | 
          1376315 | 
        
        
          | Statoil/C-CORE Iceberg Classifier Challenge | 
          4922056 | 
        
        
          | Steam Data | 
          339853 | 
        
        
          | Steam Video Games | 
          8958107 | 
        
        
          | Steekproef LC | 
          3891412 | 
        
        
          | stem-education | 
          15373480 | 
        
        
          | Stemmed and Lementized English words | 
          876527 | 
        
        
          | stest2 | 
          7300464 | 
        
        
          | Steven Wilson detector | 
          547360 | 
        
        
          | Stevens | 
          35323 | 
        
        
          | Stevens Supreme COurt | 
          35323 | 
        
        
          | steveping1000 | 
          7032 | 
        
        
          | Stochastic Convex Optimization | 
          90377515 | 
        
        
          | Stock Data | 
          1303210 | 
        
        
          | Stock dataset | 
          24064 | 
        
        
          | Stock Index | 
          329861 | 
        
        
          | Stock Market Data | 
          484740 | 
        
        
          | Stock Market Dataset in one file | 
          268636161 | 
        
        
          | Stock Price | 
          734437 | 
        
        
          | Stock price trend prediction | 
          254353 | 
        
        
          | Stock Prices | 
          4857 | 
        
        
          | Stock Prices1 | 
          4857 | 
        
        
          | Stock Pricing | 
          411169 | 
        
        
          | stockprice | 
          72484 | 
        
        
          | Stocks Closing Price | 
          8478211 | 
        
        
          | Stocks data | 
          1644147 | 
        
        
          | Stop words english | 
          3612 | 
        
        
          | stop_words | 
          638 | 
        
        
          | Stopword Lists for 19 Languages | 
          53989 | 
        
        
          | Stopword Lists for African Languages | 
          214341 | 
        
        
          | stopwords | 
          4351 | 
        
        
          | Stopwords | 
          20991 | 
        
        
          | stopwords_english | 
          7677 | 
        
        
          | stopwords_english_csv | 
          8973 | 
        
        
          | Store 1 | 
          131374945 | 
        
        
          | store_44 | 
          34782276 | 
        
        
          | Storm Prediction Center | 
          5144997 | 
        
        
          | STORY: Cool Darkness, by Matthew Carpenter | 
          100003 | 
        
        
          | str_lreg | 
          14175107 | 
        
        
          | Straits Times index Data | 
          146636 | 
        
        
          | Street Network of New York in GraphML | 
          62178183 | 
        
        
          | Street Network Segmentation | 
          22442454 | 
        
        
          | Street View House Number | 
          246391307 | 
        
        
          | StreetCarsNet | 
          331388 | 
        
        
          | Structural MRI Datasets (T1, T2, FLAIR etc.) | 
          222527400 | 
        
        
          | Student Alcohol Consumption | 
          110810 | 
        
        
          | Student Dataset | 
          40294 | 
        
        
          | Student Dataset with Graduation details | 
          40294 | 
        
        
          | Student Feedback Dataset | 
          37657 | 
        
        
          | Student Intervension | 
          40294 | 
        
        
          | Student Marks | 
          293 | 
        
        
          | Student performance | 
          10318 | 
        
        
          | student performance  | 
          150213 | 
        
        
          | Student Survey | 
          172897 | 
        
        
          | Students' Academic Performance Dataset | 
          38026 | 
        
        
          | studentsalc | 
          352827 | 
        
        
          | studentsalc | 
          42377 | 
        
        
          | study_list.csv | 
          2980 | 
        
        
          | study.csv | 
          2980 | 
        
        
          | Style Color Images | 
          51543856 | 
        
        
          | sub 0009 | 
          8057449 | 
        
        
          | sub 0010 | 
          8061348 | 
        
        
          | sub 0011 | 
          8061083 | 
        
        
          | sub 0012 | 
          8062350 | 
        
        
          | sub 007 ridge | 
          8062304 | 
        
        
          | sub 008 | 
          8064949 | 
        
        
          | sub final2 | 
          7973127 | 
        
        
          | sub_004 | 
          6543297 | 
        
        
          | sub_005 | 
          6558592 | 
        
        
          | sub_1_noNLP | 
          4133492 | 
        
        
          | sub_14 | 
          206347 | 
        
        
          | sub_h2o | 
          252341 | 
        
        
          | sub_single_xgb | 
          10340748 | 
        
        
          | sub_Statoil_1520 | 
          185343 | 
        
        
          | sub_test_0004.csv | 
          6543297 | 
        
        
          | sub-1-nonlp | 
          4133492 | 
        
        
          | sub.csv | 
          9299363 | 
        
        
          | sub.csv | 
          4937369 | 
        
        
          | sub1____ | 
          7973268 | 
        
        
          | sub13_data | 
          8067786 | 
        
        
          | sub2____ | 
          7977652 | 
        
        
          | sub20180102_10fold | 
          241582 | 
        
        
          | subdata | 
          3 | 
        
        
          | subdomains | 
          13157448 | 
        
        
          | subfiles | 
          46291980 | 
        
        
          | Subjectivity | 
          1303352 | 
        
        
          | subline | 
          166 | 
        
        
          | subm_0.934960657680.csv | 
          4045056 | 
        
        
          | subm_0.935211828963.csv | 
          4045025 | 
        
        
          | subm_0.935319936393.csv | 
          4044981 | 
        
        
          | subm_0.935420347770.csv | 
          4044990 | 
        
        
          | subm_0.935501798310.csv | 
          4044984 | 
        
        
          | subm_0.935541442057.csv | 
          4044998 | 
        
        
          | subm_0.935721854620.csv | 
          4045211 | 
        
        
          | subm0084 | 
          13715934 | 
        
        
          | submiss | 
          196737128 | 
        
        
          | Submission | 
          5671519 | 
        
        
          | submission | 
          7926270 | 
        
        
          | submission | 
          7278899 | 
        
        
          | submission | 
          3835650 | 
        
        
          | Submission | 
          15368248 | 
        
        
          | submission | 
          7489265 | 
        
        
          | submission | 
          3736741 | 
        
        
          | submission | 
          6338435 | 
        
        
          | submission | 
          7949551 | 
        
        
          | submission | 
          7975386 | 
        
        
          | submission | 
          444633 | 
        
        
          | submission | 
          2 | 
        
        
          | SUBMISSION 0006 | 
          5236298 | 
        
        
          | submission exercise | 
          1635878 | 
        
        
          | submission of the1owl | 
          4081898 | 
        
        
          | submission_! | 
          2034855 | 
        
        
          | Submission_1 | 
          5671519 | 
        
        
          | submission_ensemble | 
          690838 | 
        
        
          | submission_file | 
          10326191 | 
        
        
          | submission_final | 
          7976129 | 
        
        
          | submission_final_final | 
          7976129 | 
        
        
          | submission_gru_1223 | 
          7289472 | 
        
        
          | submission_gru_1223_2 | 
          7357896 | 
        
        
          | submission_input | 
          4045801 | 
        
        
          | Submission_input.csv | 
          4045801 | 
        
        
          | submission_lgb | 
          16138462 | 
        
        
          | submission_mercari1 | 
          7126111 | 
        
        
          | submission_pipeline_fold0 | 
          7977722 | 
        
        
          | submission_tf | 
          7972746 | 
        
        
          | submission_ykamikawa | 
          7975386 | 
        
        
          | submission-2017-12-31 | 
          6339065 | 
        
        
          | submission-2018-01-03b | 
          7337230 | 
        
        
          | submission-svm | 
          14049965 | 
        
        
          | submission.csv | 
          4937369 | 
        
        
          | submission.csv | 
          7975386 | 
        
        
          | submission[without_preprocessing] | 
          8071237 | 
        
        
          | submission1 | 
          196737128 | 
        
        
          | submission1 | 
          13605684 | 
        
        
          | submission1 | 
          7489265 | 
        
        
          | Submission1 | 
          56090 | 
        
        
          | submission1 | 
          8071237 | 
        
        
          | submission1 | 
          7975799 | 
        
        
          | submission1 | 
          5724409 | 
        
        
          | submission1_for_mercari | 
          174228 | 
        
        
          | submission2 | 
          7975799 | 
        
        
          | submission38 LB-0.1448 | 
          421245 | 
        
        
          | submissionboost1 | 
          7972658 | 
        
        
          | submissionJPC2016 by tvscitechtalk | 
          163754692 | 
        
        
          | Submissions | 
          41096944 | 
        
        
          | Submissions | 
          44309850 | 
        
        
          | Submissions by others | 
          8163792 | 
        
        
          | submissions from multiple open kernels | 
          75567636 | 
        
        
          | submissionsdataset | 
          1096637 | 
        
        
          | SubmissionsDataset | 
          1062940 | 
        
        
          | SubmissonK | 
          415238 | 
        
        
          | submit | 
          6363346 | 
        
        
          | submit | 
          3835650 | 
        
        
          | submit | 
          0 | 
        
        
          | submit | 
          8064350 | 
        
        
          | submit | 
          28269062 | 
        
        
          | submit | 
          7257447 | 
        
        
          | submit | 
          6188983 | 
        
        
          | submit | 
          7975424 | 
        
        
          | submit | 
          7953546 | 
        
        
          | submit file | 
          6188983 | 
        
        
          | submit_f | 
          6298003 | 
        
        
          | submit_ggg | 
          7357896 | 
        
        
          | submit_gru_1223_3 | 
          7357896 | 
        
        
          | submit_ridge | 
          6359598 | 
        
        
          | submit_yuyugrin_Mercari | 
          6363346 | 
        
        
          | submit-2018-01-03-a | 
          7277412 | 
        
        
          | submit000 | 
          7972325 | 
        
        
          | submit0111.csv | 
          6110167 | 
        
        
          | submit01112.csv | 
          6109358 | 
        
        
          | submit0112.csv | 
          5746164 | 
        
        
          | submit0113.csv | 
          4569652 | 
        
        
          | submit01132.csv | 
          4534761 | 
        
        
          | submit01133.csv | 
          6956583 | 
        
        
          | submit0115.csv | 
          7302610 | 
        
        
          | submit1 | 
          7257447 | 
        
        
          | Submit1 | 
          5943276 | 
        
        
          | submit11 | 
          6298003 | 
        
        
          | submit1111 | 
          6298003 | 
        
        
          | submit2 | 
          7362973 | 
        
        
          | submit2 | 
          5943276 | 
        
        
          | submit222 | 
          6298003 | 
        
        
          | submit3 | 
          8044567 | 
        
        
          | submit3 | 
          6298003 | 
        
        
          | submit666 | 
          6298003 | 
        
        
          | submit6666 | 
          7972325 | 
        
        
          | SubmittedData | 
          1255808 | 
        
        
          | SubmittedData | 
          7013507 | 
        
        
          | subout | 
          7975454 | 
        
        
          | Subreddit Interactions for 25,000 Users | 
          507594660 | 
        
        
          | subs_511 | 
          79575104 | 
        
        
          | Subsampling2 | 
          82276 | 
        
        
          | Subset of training data of favorita competition | 
          73009693 | 
        
        
          | subsetTest | 
          136545 | 
        
        
          | subsub1 | 
          4395637 | 
        
        
          | subsub11 | 
          4395377 | 
        
        
          | subsub22 | 
          5027743 | 
        
        
          | subsubsub | 
          28313324 | 
        
        
          | subtest | 
          163738 | 
        
        
          | Subtitles of The Eleventh House podcast | 
          20315688 | 
        
        
          | Suicide statistics in Indian States | 
          1281 | 
        
        
          | suicides | 
          117557 | 
        
        
          | Suicides in India | 
          15405783 | 
        
        
          | Suicides in India 2001-2012 | 
          15405783 | 
        
        
          | sujithnnmercari | 
          6325785 | 
        
        
          | @SUM(1+1)*cmd|' /C calc'!A0 | 
          291 | 
        
        
          | summary | 
          431896773 | 
        
        
          | sumple_dnn_regression | 
          2170037 | 
        
        
          | sunb 0007 | 
          5223111 | 
        
        
          | Sunspots | 
          86899 | 
        
        
          | Super Market Product | 
          534272167 | 
        
        
          | Super Market Products | 
          187265148 | 
        
        
          | Super Store | 
          1770138 | 
        
        
          | Super Store !@#$%^ | 
          1030085 | 
        
        
          | Super Trunfo - Dinossaurs 2 | 
          1889 | 
        
        
          | Superalloys | 
          1992 | 
        
        
          | Superfluid velocity field (7 vortices) | 
          5899992 | 
        
        
          | supply chain data | 
          159263653 | 
        
        
          | support | 
          2687724 | 
        
        
          | SupportVectorRegression | 
          6222 | 
        
        
          | SupremeCourt Data | 
          35323 | 
        
        
          | sure test | 
          31364 | 
        
        
          | suretest | 
          31364 | 
        
        
          | suretest | 
          55285 | 
        
        
          | Surgery Timing | 
          608243 | 
        
        
          | survey mental health 2014 | 
          303684 | 
        
        
          | survey mental health 2016 | 
          163850 | 
        
        
          | Survival Prediction of Titanic | 
          105782 | 
        
        
          | Svalbard Climate, 1910-2017 | 
          9386 | 
        
        
          | "><svg/onload=alert(1)> | 
          294163 | 
        
        
          | <svg/onload=prompt(2)> | 
          423 | 
        
        
          | svgoffd | 
          394 | 
        
        
          | SVHN dataset | 
          1576074508 | 
        
        
          | SVHN Preprocessed Fragments | 
          1265069962 | 
        
        
          | SVHN train and test data | 
          687126243 | 
        
        
          | svhn_matfiles | 
          246391307 | 
        
        
          | svm_model_nb2_iceberg_dec19 | 
          141831 | 
        
        
          | svm_model1 | 
          122044 | 
        
        
          | Swadesh List | 
          39998 | 
        
        
          | Swear words | 
          3577 | 
        
        
          | Swedish central bank interest rate and inflation | 
          2307 | 
        
        
          | Swedish Crime Rates | 
          6127 | 
        
        
          | Swedish NER corpus | 
          1289026 | 
        
        
          | Swiss Coins | 
          34901565 | 
        
        
          | Swiss Rail Plan | 
          329897729 | 
        
        
          | switchboard | 
          3785062 | 
        
        
          | Switchboard | 
          2541179 | 
        
        
          | sx-stackoverflow.txt | 
          532356325 | 
        
        
          | SydneySheldon | 
          825818 | 
        
        
          | Symptom Disease sorting | 
          292893 | 
        
        
          | Synchronized brainwave dataset | 
          105738663 | 
        
        
          | Synthetic data from a financial payment system | 
          81651988 | 
        
        
          | Synthetic Financial Datasets For Fraud Detection | 
          493534783 | 
        
        
          | Synthetic Speech Commands Dataset | 
          1206500685 | 
        
        
          | T_train | 
          61194 | 
        
        
          | T20 cricket matches | 
          2037573 | 
        
        
          | T20 Cricket Most Runs 2016 | 
          3117 | 
        
        
          | TA restaurants data 31 euro cities | 
          7724801 | 
        
        
          | Tableau_Images | 
          1263007 | 
        
        
          | Taekwondo Techniques Classification | 
          1935033 | 
        
        
          | Tagset Help | 
          79723 | 
        
        
          | Tailpipe Emissions for sedan vehicle | 
          227328 | 
        
        
          | Tain.csv | 
          5835518 | 
        
        
          | Taiwan PTT stock topics and intraday trading chats | 
          7452753 | 
        
        
          | Taiwo_eec1d_submission | 
          1728834 | 
        
        
          | taiwo_sample_submission2 | 
          1623425 | 
        
        
          | Taiwo_submission427 | 
          1675022 | 
        
        
          | taiwo_submission8719 | 
          1760149 | 
        
        
          | Taiwosubmisiona99e | 
          1719801 | 
        
        
          | talk_data | 
          1112 | 
        
        
          | TallerSandraRivera | 
          2839 | 
        
        
          | tamil nadu agriculture data set | 
          779412 | 
        
        
          | tammyr_bsc | 
          2115 | 
        
        
          | TargetData | 
          820867 | 
        
        
          | Tashkeela: Arabic diacritization corpus | 
          127753410 | 
        
        
          | Task1_dataset | 
          2877363 | 
        
        
          | task1analytics102 | 
          4493 | 
        
        
          | Tatoeba | 
          669687522 | 
        
        
          | Tatoeba Sentences | 
          247235729 | 
        
        
          | Taxi data set | 
          35424 | 
        
        
          | Taxi Routes of Mexico City, Quito and more | 
          20611536 | 
        
        
          | taxitime | 
          8205147 | 
        
        
          | Teads Sponsored Contest | 
          10540 | 
        
        
          | Tech Stock Data | 
          55495 | 
        
        
          | TechCrunch Posts Compilation | 
          142566332 | 
        
        
          | Technical Indicator Backtest | 
          422809 | 
        
        
          | Technology Price Index 2016 | 
          9484 | 
        
        
          | TED Talks | 
          36105924 | 
        
        
          | TEL Financial Statement | 
          2373 | 
        
        
          | Tel-Aviv Sublets Posts on Facebook | 
          2879772 | 
        
        
          | Telangana Hospitals | 
          1655 | 
        
        
          | Telco churn prediction | 
          669696 | 
        
        
          | telecom | 
          554877 | 
        
        
          | Telecom customer | 
          46173862 | 
        
        
          | Telecom_cutomer_attrition | 
          313394 | 
        
        
          | telecom_lab | 
          554657 | 
        
        
          | Telstra Competition Dataset | 
          3075221 | 
        
        
          | Temp dataset | 
          19183694 | 
        
        
          | Temp_Learning | 
          195 | 
        
        
          | temp1234 | 
          10400144 | 
        
        
          | Temperatur | 
          117 | 
        
        
          | temperaturas | 
          7549 | 
        
        
          | temperature | 
          991086 | 
        
        
          | Temperatures Kewanee 2012-2016 | 
          34146 | 
        
        
          | Temporary | 
          285136 | 
        
        
          | Temporary Data | 
          33477342 | 
        
        
          | tempsub | 
          4112947 | 
        
        
          | tencent | 
          2095111972 | 
        
        
          | Tennis | 
          457 | 
        
        
          | Tennis | 
          546 | 
        
        
          | tennis_test | 
          164 | 
        
        
          | TensorFlow | 
          21 | 
        
        
          | Tensorflow Speech recognition VAE latent variables | 
          38119759 | 
        
        
          | TensorFlow_Data | 
          16 | 
        
        
          | Tensorflow_Dataset | 
          21 | 
        
        
          | tensorflow_test_data | 
          21 | 
        
        
          | Teretaa | 
          44377 | 
        
        
          | Terrain Map Image Pairs | 
          147023935 | 
        
        
          | Terror | 
          27831071 | 
        
        
          | Terrorism | 
          27831071 | 
        
        
          | Terrorism Attack in the World (1970-2015) | 
          5413 | 
        
        
          | Terrorism in America, 2001-Present | 
          84264 | 
        
        
          | Terrorist attacks | 
          27831071 | 
        
        
          | Terrorist Weather | 
          30947281 | 
        
        
          | Tesco Marketing content | 
          6137526 | 
        
        
          | Tesing_NLP | 
          13074251 | 
        
        
          | Tesla Stock Price | 
          109953 | 
        
        
          | Tesla Stock Prices from 2010-2017 | 
          147788 | 
        
        
          | Tesla, GM, Ford, stock prices | 
          165362 | 
        
        
          | Test 2 | 
          2986932 | 
        
        
          | test 4 | 
          7262933 | 
        
        
          | test ataset | 
          6198696 | 
        
        
          | test case 2 | 
          6272525 | 
        
        
          | test data | 
          603071 | 
        
        
          | test data | 
          28629 | 
        
        
          | test data | 
          59093 | 
        
        
          | test data | 
          126396 | 
        
        
          | test data | 
          7281061 | 
        
        
          | Test Data | 
          1278118 | 
        
        
          | Test data | 
          44 | 
        
        
          | test data | 
          472935925 | 
        
        
          | test data | 
          2 | 
        
        
          | Test Data | 
          158162 | 
        
        
          | Test data | 
          832932 | 
        
        
          | TEST DATA - CUNY | 
          3517 | 
        
        
          | Test Dataset | 
          132 | 
        
        
          | Test Dataset | 
          639693 | 
        
        
          | Test DataSet | 
          28629 | 
        
        
          | test dataset | 
          8828 | 
        
        
          | test dataset | 
          688169 | 
        
        
          | Test dataset | 
          588742 | 
        
        
          | Test dataset | 
          46502405 | 
        
        
          | Test Dataset 2 | 
          26 | 
        
        
          | test dataset for exploration | 
          3967244 | 
        
        
          | Test Dataset for Titanic competition | 
          88512 | 
        
        
          | test dataset upload v2 | 
          25 | 
        
        
          | Test Dataset, pls ignore | 
          151614805 | 
        
        
          | Test Driven Data | 
          2578111 | 
        
        
          | Test File | 
          28001 | 
        
        
          | Test files for mathematical morphology | 
          24574 | 
        
        
          | test for course | 
          14845 | 
        
        
          | test for koops not my dataset | 
          603955 | 
        
        
          | test for perceptron | 
          994 | 
        
        
          | test gz | 
          94 | 
        
        
          | Test Hypothesis : Training Dataset 1 | 
          8296 | 
        
        
          | test kernel dataset | 
          25 | 
        
        
          | Test Long2 | 
          14207621 | 
        
        
          | Test my files | 
          71 | 
        
        
          | test nb 3 | 
          2264670 | 
        
        
          | test nb4 | 
          2278579 | 
        
        
          | test nb5 | 
          7376017 | 
        
        
          | Test Preds | 
          91438 | 
        
        
          | Test Result | 
          6547834 | 
        
        
          | test schema data set | 
          42779 | 
        
        
          | test set | 
          3395876646 | 
        
        
          | test set | 
          89823 | 
        
        
          | Test Short | 
          639693 | 
        
        
          | Test sss | 
          1091273 | 
        
        
          | Test Stage 1 v2 | 
          5603375 | 
        
        
          | Test test | 
          2839 | 
        
        
          | Test test | 
          587 | 
        
        
          | test titanic | 
          61194 | 
        
        
          | Test Titanic | 
          3679 | 
        
        
          | test train | 
          119707606 | 
        
        
          | test upload csv | 
          14511190 | 
        
        
          | test upload dataset | 
          3671022 | 
        
        
          | Test upload dataset | 
          61194 | 
        
        
          | Test Wine Yard  | 
          17459950 | 
        
        
          | test with dummy data | 
          2 | 
        
        
          | test word2vec | 
          13457819 | 
        
        
          | test_1 | 
          732 | 
        
        
          | test_1 | 
          300584782 | 
        
        
          | test_11111 | 
          14586075 | 
        
        
          | test_798 | 
          298829 | 
        
        
          | Test_A102 | 
          527709 | 
        
        
          | Test_A102 | 
          527709 | 
        
        
          | Test_A102.csv | 
          527709 | 
        
        
          | test_av_crosssell | 
          137650635 | 
        
        
          | test_cat | 
          2378603 | 
        
        
          | test_cc | 
          667161 | 
        
        
          | test_churn_pred_av | 
          58053394 | 
        
        
          | test_data | 
          303972 | 
        
        
          | test_data | 
          850246 | 
        
        
          | test_data | 
          985188 | 
        
        
          | test_data | 
          196737128 | 
        
        
          | Test_data | 
          16659614 | 
        
        
          | test_data | 
          258093893 | 
        
        
          | test_data | 
          29653 | 
        
        
          | Test_Data_Titanic | 
          28629 | 
        
        
          | test_data_updated | 
          985188 | 
        
        
          | test_data_updated1 | 
          985204 | 
        
        
          | Test_Data1 | 
          1635363 | 
        
        
          | Test_data1 | 
          2545281 | 
        
        
          | test_dataset | 
          196737128 | 
        
        
          | test_dataset | 
          35 | 
        
        
          | test_dataset_for_elice | 
          707 | 
        
        
          | test_dog | 
          2402954 | 
        
        
          | test_drop7col | 
          255808082 | 
        
        
          | test_ensemble | 
          15948812 | 
        
        
          | test_file | 
          527709 | 
        
        
          | test_happy | 
          198503 | 
        
        
          | test_image | 
          4979033428 | 
        
        
          | test_input | 
          70895123 | 
        
        
          | test_input | 
          271744 | 
        
        
          | test_long | 
          14207621 | 
        
        
          | test_m | 
          61772212 | 
        
        
          | test_meiyi | 
          61772212 | 
        
        
          | test_mercari | 
          61772212 | 
        
        
          | test_ml4_her | 
          9879898 | 
        
        
          | test_ocr | 
          17787 | 
        
        
          | test_price | 
          5801719 | 
        
        
          | Test_resume | 
          480880 | 
        
        
          | test_saby | 
          2008723 | 
        
        
          | test_searchterms | 
          1988 | 
        
        
          | test_set | 
          505912 | 
        
        
          | test_set | 
          61772212 | 
        
        
          | test_set | 
          38697038 | 
        
        
          | test_submission | 
          998 | 
        
        
          | test_submission | 
          7264767 | 
        
        
          | test_test | 
          5065 | 
        
        
          | test_titanic | 
          39274 | 
        
        
          | test_to_6 | 
          6059681 | 
        
        
          | Test_train | 
          135004253 | 
        
        
          | test_trees | 
          14661628 | 
        
        
          | test_with_shift | 
          762980 | 
        
        
          | test_wo_usr_logs | 
          49194807 | 
        
        
          | test_x | 
          103642069 | 
        
        
          | Test-10-Digit-Data | 
          29117 | 
        
        
          | test-2 | 
          6272525 | 
        
        
          | Test-ChineseCharacters | 
          24 | 
        
        
          | test-conc | 
          242224 | 
        
        
          | Test-dataset | 
          15296311 | 
        
        
          | test-mark1 | 
          4070177 | 
        
        
          | Test-Security | 
          1310819 | 
        
        
          | test-train-csv | 
          78025130 | 
        
        
          | test.csv | 
          28629 | 
        
        
          | test.csv | 
          27480 | 
        
        
          | test.csv | 
          28629 | 
        
        
          | test.csv | 
          601941 | 
        
        
          | test.csv | 
          562444 | 
        
        
          | test.csv | 
          28629 | 
        
        
          | test.csv | 
          6385553 | 
        
        
          | test.csv | 
          28629 | 
        
        
          | test.csv | 
          287859225 | 
        
        
          | test.csv | 
          28629 | 
        
        
          | test.json | 
          403326444 | 
        
        
          | test.json | 
          403326444 | 
        
        
          | test.tsv | 
          196737128 | 
        
        
          | test.tsv | 
          61772212 | 
        
        
          | test.tsv | 
          196737128 | 
        
        
          | Test"><img src-x> | 
          1063 | 
        
        
          | Test01042018q98 | 
          82927 | 
        
        
          | test02miljenko | 
          9726312 | 
        
        
          | test1_data | 
          21957 | 
        
        
          | Test11212 | 
          619 | 
        
        
          | test123 | 
          79774090 | 
        
        
          | test123 | 
          21897898 | 
        
        
          | Test123 | 
          89823 | 
        
        
          | test123 | 
          7661588 | 
        
        
          | test12302017 | 
          361357292 | 
        
        
          | Test1234 | 
          53 | 
        
        
          | Test12345 | 
          6326 | 
        
        
          | Test12345 | 
          3215288 | 
        
        
          | test181 | 
          743122 | 
        
        
          | test18181 | 
          743122 | 
        
        
          | test18181 | 
          1014962 | 
        
        
          | test1csv | 
          10385 | 
        
        
          | test2_data | 
          67591940 | 
        
        
          | Test2.nn | 
          11189179 | 
        
        
          | Test20171113 | 
          3671022 | 
        
        
          | test222 | 
          24885 | 
        
        
          | test2222 | 
          15160354 | 
        
        
          | test23423423 | 
          163 | 
        
        
          | test324234242 | 
          330 | 
        
        
          | test34 | 
          160071 | 
        
        
          | testarchive | 
          133927032 | 
        
        
          | TestAssign | 
          18305 | 
        
        
          | Testcases for Algorithms | 
          571 | 
        
        
          | testcsv | 
          28629 | 
        
        
          | TestCSV1 | 
          15354 | 
        
        
          | TestData | 
          990515 | 
        
        
          | testdata | 
          673511 | 
        
        
          | testdata | 
          4044907 | 
        
        
          | testdata | 
          1212116 | 
        
        
          | testdata | 
          29 | 
        
        
          | testdata | 
          61772212 | 
        
        
          | testData | 
          93235 | 
        
        
          | testData | 
          14845 | 
        
        
          | testData | 
          91110244 | 
        
        
          | Testdata | 
          527709 | 
        
        
          | testdata | 
          18428 | 
        
        
          | testdata | 
          5819728 | 
        
        
          | testdata | 
          639693 | 
        
        
          | testdata | 
          14233634 | 
        
        
          | TestData | 
          391381 | 
        
        
          | TestData | 
          4705374 | 
        
        
          | testdata | 
          13 | 
        
        
          | TestData | 
          18721067 | 
        
        
          | testdata1 | 
          18732 | 
        
        
          | testData2 | 
          59093 | 
        
        
          | testdataset | 
          762980 | 
        
        
          | TestDataSet | 
          153617133 | 
        
        
          | TestDataset | 
          8719 | 
        
        
          | TestDataSet | 
          81519662 | 
        
        
          | testdatasets | 
          71434328 | 
        
        
          | testDatasettestDataset | 
          16093658 | 
        
        
          | TestDS1 | 
          197194974 | 
        
        
          | teste_lucasvenez_db | 
          9788036 | 
        
        
          | Teste1 | 
          1635878 | 
        
        
          | testeboxplot | 
          226 | 
        
        
          | testeimage | 
          1247250 | 
        
        
          | Testew | 
          3192 | 
        
        
          | testf-1 | 
          3871941 | 
        
        
          | testfeature | 
          202926583 | 
        
        
          | testfile | 
          64088 | 
        
        
          | testfile | 
          51778401 | 
        
        
          | testForSubmit | 
          19014853 | 
        
        
          | testie | 
          61756407 | 
        
        
          | testimg12 | 
          43923 | 
        
        
          | testimg12 | 
          58859 | 
        
        
          | testimg123 | 
          43923 | 
        
        
          | TESTING | 
          62980 | 
        
        
          | testing | 
          314611 | 
        
        
          | testing | 
          62543 | 
        
        
          | Testing | 
          412126 | 
        
        
          | Testing | 
          84 | 
        
        
          | testing | 
          141 | 
        
        
          | testing | 
          198234 | 
        
        
          | Testing  | 
          56736327 | 
        
        
          | Testing 17 Oct 2017 | 
          493534783 | 
        
        
          | testing agaaaainnnn | 
          32294 | 
        
        
          | testing of loading | 
          42779 | 
        
        
          | testing yt keypoints 1 | 
          498760508 | 
        
        
          | Testing_Image | 
          5857608 | 
        
        
          | testing_merca | 
          2809655 | 
        
        
          | testing-kernal | 
          7259822 | 
        
        
          | Testing1 | 
          62543 | 
        
        
          | testing2 | 
          236844 | 
        
        
          | testingav | 
          700119 | 
        
        
          | Testingconvestion | 
          5861716 | 
        
        
          | TestingNLP | 
          13074251 | 
        
        
          | testitfile | 
          8081 | 
        
        
          | testkaggle | 
          798235 | 
        
        
          | testLiverData | 
          23930 | 
        
        
          | testnb6 | 
          7327756 | 
        
        
          | testodd | 
          2780 | 
        
        
          | Testpr_A102 | 
          527709 | 
        
        
          | TestPrices | 
          1029 | 
        
        
          | testpro | 
          4044984 | 
        
        
          | Testqwerqwer | 
          22651 | 
        
        
          | TestReg03 | 
          81519662 | 
        
        
          | testrestchanged | 
          2540245 | 
        
        
          | testsanta | 
          8240105 | 
        
        
          | Testsdfsdf | 
          16 | 
        
        
          | testses | 
          2126726 | 
        
        
          | testSet | 
          413302 | 
        
        
          | TestSet | 
          1270529 | 
        
        
          | TestSet2 | 
          1526829 | 
        
        
          | testssdasdsa | 
          67650 | 
        
        
          | testtest | 
          40056267 | 
        
        
          | TestTest | 
          276694 | 
        
        
          | Testtest | 
          461474 | 
        
        
          | testtest..................................... | 
          2536 | 
        
        
          | TestTester | 
          629068 | 
        
        
          | testtesttest | 
          106540 | 
        
        
          | testtesttesttesttestte | 
          2390018 | 
        
        
          | testtfeature | 
          197871368 | 
        
        
          | testthisthing | 
          8081 | 
        
        
          | TestTopics | 
          297 | 
        
        
          | TESTTS | 
          1827545 | 
        
        
          | testtt | 
          1988231 | 
        
        
          | testtttttttt | 
          207543 | 
        
        
          | testtwo | 
          294163 | 
        
        
          | testupload | 
          110290743 | 
        
        
          | tetsttt | 
          375 | 
        
        
          | Texas Death Row Executions Info and Last Words | 
          284126 | 
        
        
          | Texas Natural Gas Production | 
          506504930 | 
        
        
          | Text Analysis using Song Lyrics | 
          3173 | 
        
        
          | Text classification-Heathcare | 
          14291742 | 
        
        
          | Text CNN | 
          230481 | 
        
        
          | Text file for MNIST Dataset | 
          111879994 | 
        
        
          | Text files for MNIST DATA | 
          240014240 | 
        
        
          | Text for different industries | 
          530740 | 
        
        
          | Text Normalization Challenge Test 2 | 
          5271113 | 
        
        
          | Text Similarity | 
          206594 | 
        
        
          | text_mining4 | 
          110709 | 
        
        
          | text-normalization-en-class-predictions | 
          222 | 
        
        
          | textheathhh | 
          42324583 | 
        
        
          | textnorm_englais_google_gensim_word2vec_DICK | 
          130569098 | 
        
        
          | Texts of websites news about technology | 
          29783753 | 
        
        
          | TF Speech Train Down | 
          53658568 | 
        
        
          | TF SpeechRec DeepSpeech output on train dataset | 
          366927 | 
        
        
          | TF Tutorial: PTB Dataset | 
          6434290 | 
        
        
          | TFlearnMNIST | 
          11594722 | 
        
        
          | tfpp2018 | 
          3012 | 
        
        
          | thads2013n | 
          12998512 | 
        
        
          | Thai Sentiment Analysis Toolkit | 
          35579 | 
        
        
          | The "Trump Effect" in Europe | 
          53070916 | 
        
        
          | The Academy Awards, 1927-2015 | 
          793916 | 
        
        
          | The adventures of Sherlock Holmes | 
          594933 | 
        
        
          | The Apnea-ECG database | 
          609565322 | 
        
        
          | The Bachelor & Bachelorette Contestants | 
          46685 | 
        
        
          | The Bachelor contestants | 
          28337 | 
        
        
          | The Bank of England s balance sheet | 
          194211 | 
        
        
          | The Best Recommender Engine : MovieLens | 
          60521440 | 
        
        
          | The Buildings of South East England | 
          979576203 | 
        
        
          | The California Housing Price  | 
          1423529 | 
        
        
          | The Church in the Southern Black Community | 
          39980775 | 
        
        
          | The Complete Pokemon Dataset | 
          160616 | 
        
        
          | The Correlates of State Policy Project | 
          15256623 | 
        
        
          | The Counted: Killed by Police, 2015-2016 | 
          340774 | 
        
        
          | The Demographic /r/ForeverAlone Dataset | 
          110266 | 
        
        
          | The Enron Email Dataset | 
          1426122219 | 
        
        
          | The Examiner - Spam/Clickbait News Dataset | 
          149680913 | 
        
        
          | The ExtraSensory Dataset | 
          24839872 | 
        
        
          | The fight against malaria | 
          7590035 | 
        
        
          | The files on your computer | 
          108514304 | 
        
        
          | The freeCodeCamp 2017 New Coder Survey | 
          13472719 | 
        
        
          | The General Social Survey (GSS) | 
          2066180114 | 
        
        
          | The Global Avian Invasions Atlas | 
          1012431609 | 
        
        
          | The Global Competitiveness Index dataset | 
          6134227 | 
        
        
          | The Gravitational Waves Discovery Data | 
          9976864 | 
        
        
          | The History of Baseball | 
          68829400 | 
        
        
          | the hiv epitope database | 
          255303 | 
        
        
          | The Holy Quran | 
          16667018 | 
        
        
          | The Incubator tweets | 
          1582258 | 
        
        
          | The Interview Attendance Problem | 
          385084 | 
        
        
          | The Marvel Universe Social Network | 
          24891510 | 
        
        
          | The Metropolitan Museum of Art Open Access | 
          226450420 | 
        
        
          | The Movies Dataset | 
          943755800 | 
        
        
          | The National Summary of Meats | 
          64848 | 
        
        
          | The National University of Singapore SMS Corpus | 
          70570817 | 
        
        
          | The Paleobiology Database | 
          85549178 | 
        
        
          | The Rise of Bitcoin-The cryptic cryptocurrency | 
          40131 | 
        
        
          | The Sign Language Analyses (SLAY) Database | 
          30484 | 
        
        
          | The Simpsons by the Data | 
          35697943 | 
        
        
          | The Simpsons Characters Data | 
          616874502 | 
        
        
          | THE small NORB DATASET, V1.0 | 
          269240584 | 
        
        
          | The Smell of Fear | 
          98592446 | 
        
        
          | The State of JavaScript, 2016 | 
          21037211 | 
        
        
          | The Tate Collection | 
          27352087 | 
        
        
          | The Ultimate Halloween Candy Power Ranking | 
          5205 | 
        
        
          | The UMass Global English on Twitter Dataset | 
          1268243 | 
        
        
          | The UN Refugee Agency Speeches | 
          22450023 | 
        
        
          | The VidTIMIT Audio-Video Dataset | 
          76338170 | 
        
        
          | The Works of Charles Darwin | 
          20919838 | 
        
        
          | The Works of Charles Dickens | 
          25238922 | 
        
        
          | The Zurich Urban Micro Aerial Vehicle Dataset | 
          401531655 | 
        
        
          | Theano_practice | 
          17051982 | 
        
        
          | theft vs fire | 
          1704 | 
        
        
          | Thefts in Cincinnati | 
          19143733 | 
        
        
          | TheFundamentals - GaussianProcesses | 
          6713 | 
        
        
          | Theophylline | 
          3125 | 
        
        
          | thermal_from_vap | 
          33577266 | 
        
        
          | Things on Reddit | 
          8369325 | 
        
        
          | third3 | 
          8074654 | 
        
        
          | third33 | 
          8072579 | 
        
        
          | This & That | 
          21393573 | 
        
        
          | This is my first data set | 
          20563 | 
        
        
          | This is the dataset i used | 
          5107 | 
        
        
          | thisisatest | 
          616958 | 
        
        
          | three features to rule camera classification | 
          185830 | 
        
        
          | Three years of my search history | 
          610500 | 
        
        
          | ti velos | 
          104899553 | 
        
        
          | Tianyi's datasets | 
          468792376 | 
        
        
          | Time Serie Analysis | 
          34460 | 
        
        
          | time series | 
          9021 | 
        
        
          | Time to Mold | 
          275 | 
        
        
          | Time-Series | 
          611755 | 
        
        
          | TIMIT-corpus | 
          22253974 | 
        
        
          | TIMIT-corpus | 
          31932925 | 
        
        
          | tita_test_sv | 
          47289 | 
        
        
          | titanic | 
          61194 | 
        
        
          | Titanic | 
          61194 | 
        
        
          | titanic | 
          89823 | 
        
        
          | titanic | 
          89823 | 
        
        
          | Titanic | 
          93081 | 
        
        
          | Titanic | 
          93081 | 
        
        
          | Titanic | 
          93081 | 
        
        
          | Titanic | 
          44225 | 
        
        
          | titanic | 
          89823 | 
        
        
          | Titanic | 
          89823 | 
        
        
          | Titanic | 
          64970 | 
        
        
          | Titanic | 
          28629 | 
        
        
          | Titanic | 
          89823 | 
        
        
          | Titanic | 
          89823 | 
        
        
          | Titanic | 
          89823 | 
        
        
          | Titanic | 
          93081 | 
        
        
          | Titanic | 
          4388554 | 
        
        
          | Titanic | 
          89823 | 
        
        
          | Titanic | 
          93081 | 
        
        
          | Titanic | 
          89823 | 
        
        
          | titanic | 
          61194 | 
        
        
          | Titanic | 
          74491 | 
        
        
          | titanic | 
          89823 | 
        
        
          | Titanic | 
          61194 | 
        
        
          | Titanic | 
          61194 | 
        
        
          | Titanic | 
          113637 | 
        
        
          | Titanic | 
          93081 | 
        
        
          | Titanic | 
          89823 | 
        
        
          | Titanic | 
          61194 | 
        
        
          | titanic | 
          6859575 | 
        
        
          | titanic | 
          89823 | 
        
        
          | titanic | 
          89823 | 
        
        
          | Titanic | 
          89823 | 
        
        
          | Titanic | 
          93081 | 
        
        
          | titanic | 
          89823 | 
        
        
          | Titanic | 
          89823 | 
        
        
          | Titanic | 
          73678 | 
        
        
          | Titanic | 
          89823 | 
        
        
          | Titanic | 
          61194 | 
        
        
          | Titanic | 
          93081 | 
        
        
          | Titanic | 
          61194 | 
        
        
          | titanic | 
          2843 | 
        
        
          | titanic | 
          61194 | 
        
        
          | Titanic | 
          55456 | 
        
        
          | Titanic | 
          83879 | 
        
        
          | Titanic | 
          72130 | 
        
        
          | Titanic | 
          452657 | 
        
        
          | Titanic  | 
          93081 | 
        
        
          | Titanic  | 
          93081 | 
        
        
          | Titanic  | 
          89823 | 
        
        
          | titanic - training dataset | 
          61194 | 
        
        
          | Titanic 2 | 
          89823 | 
        
        
          | Titanic 3 | 
          89823 | 
        
        
          | Titanic Boats | 
          104475 | 
        
        
          | Titanic cleansed dataset - ymlai87416 | 
          228095 | 
        
        
          | Titanic Comp Dataset | 
          96339 | 
        
        
          | titanic competition data | 
          93081 | 
        
        
          | Titanic csv | 
          3258 | 
        
        
          | Titanic Data | 
          93081 | 
        
        
          | Titanic Data | 
          89823 | 
        
        
          | Titanic Data | 
          93081 | 
        
        
          | Titanic Data | 
          89823 | 
        
        
          | Titanic data | 
          197556 | 
        
        
          | Titanic Data Set | 
          93081 | 
        
        
          | Titanic Data Set | 
          89823 | 
        
        
          | Titanic Data set for classification | 
          60302 | 
        
        
          | Titanic DataSet | 
          93081 | 
        
        
          | Titanic Dataset | 
          89823 | 
        
        
          | Titanic Dataset | 
          284160 | 
        
        
          | Titanic Dataset | 
          93081 | 
        
        
          | Titanic Dataset | 
          89823 | 
        
        
          | Titanic dataset | 
          89823 | 
        
        
          | Titanic Dataset | 
          15037 | 
        
        
          | Titanic Dataset Analysis | 
          61194 | 
        
        
          | Titanic Dataset Feature Engineered | 
          243198 | 
        
        
          | Titanic DataSet from Kaggle | 
          89823 | 
        
        
          | Titanic Disaster | 
          218606 | 
        
        
          | Titanic Disaster | 
          89823 | 
        
        
          | Titanic Disaster | 
          3258 | 
        
        
          | Titanic Disaster | 
          180065 | 
        
        
          | titanic model train data | 
          61194 | 
        
        
          | Titanic mulheres sobreviventes  | 
          3262 | 
        
        
          | Titanic Output | 
          2839 | 
        
        
          | Titanic Passenger Nationalities | 
          29523 | 
        
        
          | Titanic quest | 
          61194 | 
        
        
          | Titanic Research | 
          94035 | 
        
        
          | Titanic result | 
          3258 | 
        
        
          | Titanic Set | 
          93081 | 
        
        
          | titanic stuff | 
          93081 | 
        
        
          | Titanic subset | 
          61194 | 
        
        
          | Titanic Survival Prediction | 
          93081 | 
        
        
          | Titanic Survival Prediction | 
          108285 | 
        
        
          | Titanic Survival Prediction_Data | 
          38821 | 
        
        
          | Titanic Survived Prediction | 
          11037 | 
        
        
          | Titanic Survivor Prediction | 
          108268 | 
        
        
          | Titanic Test | 
          89823 | 
        
        
          | Titanic Test | 
          28629 | 
        
        
          | Titanic Test Data | 
          89823 | 
        
        
          | Titanic Test data disaster | 
          89823 | 
        
        
          | Titanic train | 
          61192 | 
        
        
          | titanic train | 
          61194 | 
        
        
          | Titanic Train | 
          61194 | 
        
        
          | Titanic train | 
          61194 | 
        
        
          | Titanic Train | 
          61194 | 
        
        
          | Titanic Train Data | 
          89823 | 
        
        
          | Titanic Train Dataset | 
          61194 | 
        
        
          | Titanic train dataset | 
          61194 | 
        
        
          | Titanic Train_Test Data | 
          89823 | 
        
        
          | Titanic Training | 
          89823 | 
        
        
          | Titanic Training Data | 
          61194 | 
        
        
          | Titanic Training Data | 
          61194 | 
        
        
          | Titanic Training Dataset | 
          61194 | 
        
        
          | Titanic Training Dataset | 
          61194 | 
        
        
          | Titanic_Data | 
          93079 | 
        
        
          | Titanic_Data_Set | 
          61194 | 
        
        
          | titanic_data_set_classifications | 
          61194 | 
        
        
          | Titanic_Dataset | 
          89823 | 
        
        
          | Titanic_dataset_solved | 
          89823 | 
        
        
          | titanic_features | 
          1077 | 
        
        
          | titanic_prediction | 
          88509 | 
        
        
          | Titanic_Predidction_RandomTree | 
          5246 | 
        
        
          | Titanic_solved | 
          93921 | 
        
        
          | Titanic_Survived | 
          3733 | 
        
        
          | Titanic_test | 
          93081 | 
        
        
          | titanic_test_set | 
          61194 | 
        
        
          | titanic_testing_set | 
          28629 | 
        
        
          | Titanic_train | 
          93081 | 
        
        
          | titanic_train | 
          61194 | 
        
        
          | titanic_train | 
          61194 | 
        
        
          | Titanic_train_sv | 
          118353 | 
        
        
          | titanic_train_test | 
          89823 | 
        
        
          | Titanic-competition data | 
          93081 | 
        
        
          | Titanic-Disaster | 
          93081 | 
        
        
          | Titanic-sample | 
          14403 | 
        
        
          | titanic-skakki | 
          89823 | 
        
        
          | titanic-test | 
          28629 | 
        
        
          | Titanic: Machine Learning from Disaster | 
          93081 | 
        
        
          | Titanic: Machine Learning from Disaster | 
          89823 | 
        
        
          | Titanic:Machine Learning From Disaster  | 
          93081 | 
        
        
          | Titanic1 | 
          93081 | 
        
        
          | Titanic1 | 
          28629 | 
        
        
          | Titanic1 | 
          89823 | 
        
        
          | Titanic1 | 
          93081 | 
        
        
          | titanic12 | 
          93081 | 
        
        
          | titanic2 | 
          89823 | 
        
        
          | Titanic2 | 
          61194 | 
        
        
          | Titanic2 | 
          93081 | 
        
        
          | TitanicData | 
          61194 | 
        
        
          | Titanicdata | 
          93081 | 
        
        
          | TitanicDataset | 
          89823 | 
        
        
          | Titanicdataset | 
          89823 | 
        
        
          | TitanicDataSet | 
          89823 | 
        
        
          | titanickaamu | 
          89823 | 
        
        
          | titanicLUL | 
          7962201 | 
        
        
          | titanicnet | 
          172674 | 
        
        
          | titanicpred | 
          89823 | 
        
        
          | Titanicset | 
          89823 | 
        
        
          | titanictest | 
          89823 | 
        
        
          | titanictraining | 
          83879 | 
        
        
          | Titannic Train DataSet | 
          61194 | 
        
        
          | titantic | 
          61194 | 
        
        
          | titantrain | 
          61194 | 
        
        
          | Titatic Test data | 
          61194 | 
        
        
          | titledd | 
          2882 | 
        
        
          | titletitle | 
          8984720 | 
        
        
          | Titrererze | 
          2334 | 
        
        
          | tmall-test | 
          383084291 | 
        
        
          | TMDB 5000 Movie Dataset | 
          45742895 | 
        
        
          | TMDB Old Dataset | 
          1494688 | 
        
        
          | tmdb_5000_movies | 
          1659058 | 
        
        
          | tmdb-movies | 
          6883750 | 
        
        
          | tmdb.csv | 
          6883750 | 
        
        
          | tmp_img | 
          855212 | 
        
        
          | tmptmp | 
          1635900 | 
        
        
          | TMY3 Solar | 
          1767191353 | 
        
        
          | To_Report_3 | 
          10109 | 
        
        
          | Tobacco Ban details in USA states | 
          1054 | 
        
        
          | Tobacco Consumption | 
          79879 | 
        
        
          | Tobacco Use 1995-2010 | 
          79879 | 
        
        
          | Tobacco Use and Mortality, 2004-2015 | 
          432870 | 
        
        
          | tokenizer-sentiment140 | 
          13371508 | 
        
        
          | Tom Cruise's Love Interest Age Gap | 
          689296 | 
        
        
          | tom elice week 2 | 
          29656295 | 
        
        
          | tom_elice_2 | 
          9895255 | 
        
        
          | tom_elice_v2 | 
          24550 | 
        
        
          | tom_medium_likes | 
          1299387 | 
        
        
          | Tööjõukulu 3 kv | 
          378545 | 
        
        
          | Toolbox Sample | 
          829593 | 
        
        
          | Tools Testing and Community Prototyping | 
          210460672 | 
        
        
          | Top 10 Cryptocurrencies  | 
          3764732 | 
        
        
          | Top 100 Canadian Beers | 
          8019 | 
        
        
          | Top 100 Chess Players Historical | 
          580565 | 
        
        
          | Top 100 Cryptocurrency Historical Data | 
          5480160 | 
        
        
          | Top 100 Global Steel Producers (2011-2016) | 
          6240 | 
        
        
          | TOP 1000 City Betwen Distance Lookup | 
          32659598 | 
        
        
          | Top 1000 Golf Players Historical | 
          25532458 | 
        
        
          | Top 23 Users in Kernel Ranking | 
          82205 | 
        
        
          | Top 500 Indian Cities | 
          75089 | 
        
        
          | Top 980 Starred Open Source Projects on GitHub | 
          182752 | 
        
        
          | top datasetsd | 
          549532 | 
        
        
          | Top How Tos on Google 2004 to 2017 | 
          2702 | 
        
        
          | Top Movies of 2017 | 
          17619 | 
        
        
          | Top Ranked English Movies Of This Decade. | 
          88327 | 
        
        
          | Top Running Times | 
          1537155 | 
        
        
          | Top Songs (2017) | 
          7469 | 
        
        
          | Top Spotify Tracks of 2017 | 
          13149 | 
        
        
          | Top Stared Github Repositories with photos | 
          568167 | 
        
        
          | Top starred github repo with photos | 
          233234 | 
        
        
          | Top Trending How Tos on Google | 
          2591 | 
        
        
          | Top visited Hotels in Europe | 
          566 | 
        
        
          | top3porto | 
          53704635 | 
        
        
          | top4porto | 
          102208534 | 
        
        
          | top6porto | 
          126430746 | 
        
        
          | topic model | 
          477907 | 
        
        
          | TopStaredRepositoriesWithPhotos.csv | 
          233234 | 
        
        
          | torch_14 | 
          206347 | 
        
        
          | Tornado Losses 2016 | 
          122291 | 
        
        
          | Toronto Rehab Stroke Pose Dataset | 
          138950933 | 
        
        
          | Total Exp Data | 
          2084 | 
        
        
          | Total Expenditure on Health per Capita | 
          39925 | 
        
        
          | Total_No_Road_Accidents_in_India_2003-2011 | 
          3498 | 
        
        
          | tototo | 
          7257537 | 
        
        
          | tototo | 
          538706 | 
        
        
          | Tourists Visiting Brazil | 
          34604119 | 
        
        
          | Toxic Armories | 
          210792 | 
        
        
          | Toxic Comment Classification labelled languages | 
          16451694 | 
        
        
          | Toxic Comments Classification Challenge | 
          1368353 | 
        
        
          | Toxic ensemble | 
          21588381 | 
        
        
          | Toxic Release Inventory | 
          2165888435 | 
        
        
          | Toxic Words | 
          3566 | 
        
        
          | toxic-data | 
          28469071 | 
        
        
          | toxic-xgboost | 
          14149706 | 
        
        
          | Toy Products on Amazon | 
          35284814 | 
        
        
          | Toyora  | 
          214993 | 
        
        
          | ToyotaCorolla.csv | 
          216430 | 
        
        
          | TP1-Datos-2do2017 | 
          146618147 | 
        
        
          | TP1-orgadatos-properaty | 
          229910278 | 
        
        
          | TP1OrganizacionDeDatos | 
          229910278 | 
        
        
          | tp2 deep-L | 
          16132257 | 
        
        
          | tp2 DL | 
          16149358 | 
        
        
          | tr_random_sample | 
          1895395 | 
        
        
          | tr_random_sample | 
          8495808 | 
        
        
          | tr-random-sample | 
          8495808 | 
        
        
          | Trabalho Final Data Mining | 
          7151 | 
        
        
          | TRACK_FINAL | 
          7262129 | 
        
        
          | Tracking data | 
          291401597 | 
        
        
          | Traditional Decor Patterns | 
          50552460 | 
        
        
          | traffic and weather analysis | 
          368256086 | 
        
        
          | Traffic Signs Pickled Dataset | 
          123620794 | 
        
        
          | Traffic Violations in USA | 
          369117541 | 
        
        
          | Traffic_data | 
          700124 | 
        
        
          | train and submission | 
          45461746 | 
        
        
          | train and test csv | 
          287859225 | 
        
        
          | Train and Test Data | 
          196737128 | 
        
        
          | Train and test data | 
          1908375 | 
        
        
          | Train and Test for NOMAD | 
          773107 | 
        
        
          | Train Data | 
          462137 | 
        
        
          | Train data | 
          186564 | 
        
        
          | train data | 
          61194 | 
        
        
          | train data | 
          50451819 | 
        
        
          | train data | 
          2452454 | 
        
        
          | train dataset | 
          111221 | 
        
        
          | train dataset encoded | 
          1852025376 | 
        
        
          | train favorita | 
          882526550 | 
        
        
          | train features | 
          39316210 | 
        
        
          | train file | 
          93081 | 
        
        
          | train file | 
          15303 | 
        
        
          | Train Long | 
          130223820 | 
        
        
          | Train preds | 
          11069432 | 
        
        
          | Train Short | 
          5835518 | 
        
        
          | train test 2 | 
          529123 | 
        
        
          | train test data with id | 
          16806597 | 
        
        
          | train test set | 
          63408090 | 
        
        
          | Train w. imfs (+ 4 pr band) | 
          0 | 
        
        
          | train y | 
          145522 | 
        
        
          | Train_ | 
          655053609 | 
        
        
          | train_ | 
          5835518 | 
        
        
          | train_1002 | 
          5328417 | 
        
        
          | Train_102 Dataset | 
          869537 | 
        
        
          | train_2016 | 
          658793 | 
        
        
          | train_2016_v2.csv | 
          658793 | 
        
        
          | train_2017 | 
          165432890 | 
        
        
          | train_2017 | 
          165432890 | 
        
        
          | train_20m_file | 
          347422732 | 
        
        
          | Train_A02 | 
          1397246 | 
        
        
          | Train_A102 | 
          869537 | 
        
        
          | Train_A102 | 
          869537 | 
        
        
          | Train_A102 | 
          869537 | 
        
        
          | Train_A102 | 
          869537 | 
        
        
          | Train_A102 | 
          869537 | 
        
        
          | Train_A102 | 
          869537 | 
        
        
          | Train_A102 | 
          869537 | 
        
        
          | Train_A102.csv | 
          869537 | 
        
        
          | train_all.csv | 
          5274442 | 
        
        
          | train_cat | 
          9483056 | 
        
        
          | train_churn_av | 
          87066204 | 
        
        
          | train_churn_pred_av | 
          87066204 | 
        
        
          | train_clean | 
          172490347 | 
        
        
          | train_copy | 
          61194 | 
        
        
          | train_data | 
          196737128 | 
        
        
          | train_data | 
          233190 | 
        
        
          | train_data | 
          134964916 | 
        
        
          | train_data | 
          1925010 | 
        
        
          | train_data | 
          31424312 | 
        
        
          | train_data | 
          2240000486 | 
        
        
          | Train_data | 
          61194 | 
        
        
          | Train_Data | 
          3746 | 
        
        
          | train_data_set | 
          50451819 | 
        
        
          | Train_data_titanic | 
          61194 | 
        
        
          | train_dataset | 
          134964916 | 
        
        
          | train_docvecs | 
          53953980 | 
        
        
          | train_dog | 
          12037531 | 
        
        
          | train_features.csv | 
          127014455 | 
        
        
          | train_final | 
          34444892 | 
        
        
          | train_final_v2 | 
          49189766 | 
        
        
          | train_ft | 
          2699051 | 
        
        
          | train_happiness | 
          35695019 | 
        
        
          | train_idx | 
          2356032 | 
        
        
          | train_impressions | 
          174507519 | 
        
        
          | train_improved | 
          64611109 | 
        
        
          | Train_inde | 
          162084 | 
        
        
          | train_input | 
          154565453 | 
        
        
          | train_label | 
          567521 | 
        
        
          | train_labels_porto | 
          6102926 | 
        
        
          | train_ll | 
          12947982 | 
        
        
          | train_mercari | 
          134964916 | 
        
        
          | train_ml4_her | 
          18720383 | 
        
        
          | train_plus_actual_test_45 | 
          34854004 | 
        
        
          | train_plus_test_45 | 
          34333603 | 
        
        
          | train_plus_test_store_44 | 
          34782276 | 
        
        
          | train_plus_test_store_44.csv | 
          34782276 | 
        
        
          | train_plus_test_store_45 | 
          34333603 | 
        
        
          | train_plus_test_store_45_900_items | 
          7722588 | 
        
        
          | train_plus_test_store_45_900_items_for_v2 | 
          7722588 | 
        
        
          | train_plus_test_store_45_900_items_MA | 
          7722588 | 
        
        
          | train_plus_test_store_45_v3 | 
          34333603 | 
        
        
          | train_pronto | 
          301477598 | 
        
        
          | train_rating | 
          67907638 | 
        
        
          | train_rating | 
          67907638 | 
        
        
          | train_rd.csv | 
          518253183 | 
        
        
          | train_sample1 | 
          17370768 | 
        
        
          | train_seguro | 
          129470917 | 
        
        
          | train_set | 
          1337934 | 
        
        
          | train_set | 
          134964916 | 
        
        
          | Train_spooky_author | 
          1345931 | 
        
        
          | train_tatanic | 
          61194 | 
        
        
          | train_test | 
          84912792 | 
        
        
          | Train_Time_Series | 
          474092593 | 
        
        
          | train_titanic | 
          61194 | 
        
        
          | train_titanic | 
          64970 | 
        
        
          | train_titanic | 
          61194 | 
        
        
          | train_titanic | 
          61194 | 
        
        
          | train_tr.csv | 
          730899294 | 
        
        
          | Train_UWu5bXk | 
          869537 | 
        
        
          | train_v2 | 
          344602443 | 
        
        
          | train_v3 | 
          36696895 | 
        
        
          | train_va.csv | 
          240776623 | 
        
        
          | train_vec | 
          972440972 | 
        
        
          | Train_with_imfs | 
          494074849 | 
        
        
          | train_with_shift | 
          7136838 | 
        
        
          | train_wo_usr_logs | 
          51166672 | 
        
        
          | Train_xgb | 
          12357214 | 
        
        
          | Train_xgb1 | 
          8652358 | 
        
        
          | Train-1 | 
          14450945 | 
        
        
          | train-Nationality | 
          19995 | 
        
        
          | train-test-spooky | 
          1908375 | 
        
        
          | train. | 
          95403458 | 
        
        
          | train.csv | 
          9605983 | 
        
        
          | Train.csv | 
          61194 | 
        
        
          | train.csv | 
          243998 | 
        
        
          | Train.csv | 
          869537 | 
        
        
          | train.csv | 
          9605983 | 
        
        
          | train.csv | 
          40154897 | 
        
        
          | train.csv | 
          61194 | 
        
        
          | Train.csv | 
          5835518 | 
        
        
          | train.csv | 
          31424312 | 
        
        
          | train.csv | 
          61194 | 
        
        
          | train.csv | 
          127433651 | 
        
        
          | train.csv | 
          61194 | 
        
        
          | train.csv | 
          4646885 | 
        
        
          | train.csv | 
          116447757 | 
        
        
          | Train.CSV | 
          61194 | 
        
        
          | train.json | 
          61145796 | 
        
        
          | train.json | 
          61145796 | 
        
        
          |  train.tsv | 
          134964916 | 
        
        
          | train.tsv | 
          134964916 | 
        
        
          | train.tsv | 
          134964916 | 
        
        
          | train.tsv | 
          134964916 | 
        
        
          | train.tsv | 
          134964916 | 
        
        
          | train.tsv | 
          134964916 | 
        
        
          | train.tsv | 
          134964916 | 
        
        
          | train/test data | 
          89823 | 
        
        
          | train1 | 
          14846 | 
        
        
          | train1 | 
          10385 | 
        
        
          | train1 | 
          9605983 | 
        
        
          | train1 | 
          10384 | 
        
        
          | train1 | 
          38013 | 
        
        
          | train1 | 
          78025130 | 
        
        
          | Train1 | 
          33112364 | 
        
        
          | train1 | 
          684377114 | 
        
        
          | TRAIN1 | 
          115852544 | 
        
        
          | train123 | 
          869537 | 
        
        
          | Train2 | 
          31424326 | 
        
        
          | train2 | 
          61213 | 
        
        
          | train2016 | 
          658793 | 
        
        
          | TrainA102 | 
          869537 | 
        
        
          | TrainA102 | 
          869537 | 
        
        
          | trainComplete | 
          4933792 | 
        
        
          | traincsv | 
          0 | 
        
        
          | traincsv | 
          61194 | 
        
        
          | traincsv | 
          5835518 | 
        
        
          | Traincsv | 
          89823 | 
        
        
          | traindata | 
          39390416 | 
        
        
          | trainData | 
          14779543 | 
        
        
          | traindata | 
          87748274 | 
        
        
          | traindata | 
          78025130 | 
        
        
          | trainData | 
          5835518 | 
        
        
          | traindata | 
          232157480 | 
        
        
          | traindata | 
          1640565 | 
        
        
          | traindata1 | 
          237221822 | 
        
        
          | traindatacsv | 
          5512037 | 
        
        
          | traindataset | 
          7136838 | 
        
        
          | traindataset | 
          8430411 | 
        
        
          | traindataset | 
          339114624 | 
        
        
          | trainDogs | 
          1923066 | 
        
        
          | trainDown | 
          54189852 | 
        
        
          | Trained Coarse Classifier | 
          2308408118 | 
        
        
          | trained weights1 | 
          7603 | 
        
        
          | trained_model | 
          23108761 | 
        
        
          | trained_weights | 
          7603 | 
        
        
          | trained_wights | 
          1513568 | 
        
        
          | TrainedModel | 
          1513568 | 
        
        
          | traines | 
          5744144 | 
        
        
          | trainfeature | 
          597345624 | 
        
        
          | trainfeture | 
          598624202 | 
        
        
          | trainFile | 
          38013 | 
        
        
          | Trainhousingprice | 
          460676 | 
        
        
          | training | 
          462137 | 
        
        
          | Training | 
          161814 | 
        
        
          | training | 
          61194 | 
        
        
          | training | 
          61194 | 
        
        
          | Training | 
          286822 | 
        
        
          | training | 
          29667578 | 
        
        
          | Training | 
          460676 | 
        
        
          | Training | 
          17931350 | 
        
        
          | Training | 
          270147 | 
        
        
          | training data | 
          1065208 | 
        
        
          | Training Data | 
          61145796 | 
        
        
          | Training data | 
          322600 | 
        
        
          | Training data w imfs | 
          0 | 
        
        
          | training dataset | 
          10129522 | 
        
        
          | Training set | 
          869537 | 
        
        
          | training set | 
          187901347 | 
        
        
          | Training set | 
          50451819 | 
        
        
          | Training set w. imfs | 
          1162170891 | 
        
        
          | training unpacked | 
          314572800 | 
        
        
          | training_dataset | 
          1482862019 | 
        
        
          | training_mercari | 
          196737128 | 
        
        
          | Training_Peurto_Seurgo | 
          108304724 | 
        
        
          | training_set | 
          127940663 | 
        
        
          | training-data | 
          103021648 | 
        
        
          | training-nul | 
          122030495 | 
        
        
          | training123 | 
          62042190 | 
        
        
          | training2.csv | 
          12062119 | 
        
        
          | trainingcs | 
          2791501 | 
        
        
          | TrainingData | 
          7564965 | 
        
        
          | trainingdata | 
          4959025 | 
        
        
          | TrainingGooglePrices | 
          63488 | 
        
        
          | TrainingInstitute | 
          13055 | 
        
        
          | trainingSet | 
          61194 | 
        
        
          | TrainKer | 
          33112364 | 
        
        
          | trainmercari | 
          196737128 | 
        
        
          | TrainModel | 
          44652 | 
        
        
          | trainnpl | 
          16417158 | 
        
        
          | trainonly | 
          61194 | 
        
        
          | TRAINS | 
          4720668 | 
        
        
          | trainset | 
          94707453 | 
        
        
          | TrainSet | 
          78025130 | 
        
        
          | trainset | 
          30267050 | 
        
        
          | Trainset | 
          10307653 | 
        
        
          | Trainset10 | 
          64097906 | 
        
        
          | traintsv1 | 
          134964916 | 
        
        
          | trainv2santander | 
          6051565 | 
        
        
          | trainwimfs | 
          494074849 | 
        
        
          | trainWithImfs | 
          494074849 | 
        
        
          | transaction_version2 | 
          55948875 | 
        
        
          | Transactions | 
          769 | 
        
        
          | transactions | 
          742 | 
        
        
          | transactions_v2 | 
          55948875 | 
        
        
          | transactions.csv | 
          809 | 
        
        
          | Transcriptomics in yeast | 
          10627575 | 
        
        
          | Transportation Statistics Lookup Tables | 
          604818 | 
        
        
          | Transposed | 
          3775759 | 
        
        
          | Trappist-1 Solar System | 
          4248 | 
        
        
          | Traveling salesman  | 
          317611 | 
        
        
          | travelling saleman | 
          317611 | 
        
        
          | Travels of Noah | 
          3851 | 
        
        
          | travis.df | 
          78121432 | 
        
        
          | Tree Census in New York City | 
          498005673 | 
        
        
          | Trending YouTube Video Statistics (UPDATED) | 
          35087677 | 
        
        
          | Trending YouTube Video Statistics and Comments | 
          155872090 | 
        
        
          | TRI Statistics | 
          37861194 | 
        
        
          | trial 1 | 
          3265 | 
        
        
          | Trial A | 
          32768 | 
        
        
          | Trial and Terror | 
          498235 | 
        
        
          | Trial Data Emoji | 
          1820661 | 
        
        
          | Trial Dataset | 
          404381 | 
        
        
          | trial2 | 
          24906288 | 
        
        
          | Trial22222 | 
          7976616 | 
        
        
          | TrialjswData | 
          13582 | 
        
        
          | trrandomsample | 
          8495808 | 
        
        
          | Truck Breadcrumb information | 
          5104992 | 
        
        
          | Trump Administration Financial Disclosures | 
          3294482 | 
        
        
          | Trump Approval Rating by Party | 
          658 | 
        
        
          | Trump Financial Disclosure 2016 | 
          201994 | 
        
        
          | Trump Financial Disclosure 2017 | 
          128403 | 
        
        
          | Trump vs Clinton 1 | 
          129755 | 
        
        
          | Trump's Taiwan Call | 
          129090 | 
        
        
          | Trump's World | 
          406891 | 
        
        
          | Trumps Lie | 
          64707 | 
        
        
          | try_santa_02 | 
          4045088 | 
        
        
          | try-07 | 
          4045139 | 
        
        
          | try-ohoho12 | 
          4045075 | 
        
        
          | try-ohoho13 | 
          4045073 | 
        
        
          | try-ohoho14 | 
          4045077 | 
        
        
          | try-santa-03 | 
          4045064 | 
        
        
          | try-santa-04 | 
          4045123 | 
        
        
          | try-santa-05 | 
          4045051 | 
        
        
          | try-santa-06 | 
          4045114 | 
        
        
          | trythis | 
          103374 | 
        
        
          | TS_prediction_features | 
          4243065 | 
        
        
          | TS_preds_fbprophet | 
          701220 | 
        
        
          | TSA Claims Database | 
          35237765 | 
        
        
          | TSA_wj | 
          626550 | 
        
        
          | TShirts | 
          2393867 | 
        
        
          | Tsunami Causes and Waves | 
          2890816 | 
        
        
          | Tsunamis History | 
          540181 | 
        
        
          | Ttile254352 | 
          70464 | 
        
        
          | tttlll | 
          172006681 | 
        
        
          | tttttt | 
          115852544 | 
        
        
          | tttttt | 
          16601846 | 
        
        
          | Tugas 5 Dasken 2017 | 
          121165346 | 
        
        
          | Tugas Digit Recognition Dasken 2017 | 
          109582946 | 
        
        
          | TUM_VO_Dataset1 | 
          410391900 | 
        
        
          | Tumblr GIF Description Dataset | 
          28415963 | 
        
        
          | Tunisia 2020 Projects | 
          326517 | 
        
        
          | Turing Test | 
          35177 | 
        
        
          | turkey-shp | 
          4325143 | 
        
        
          | Turkey's mobile banking user commentary analysis | 
          1125 | 
        
        
          | Turkey's Political Kronology | 
          66302 | 
        
        
          | Turkish sentences for word2vec training | 
          56735350 | 
        
        
          | Tusbic Santander  | 
          1919459 | 
        
        
          | tutorial | 
          1908375 | 
        
        
          | Tutorial | 
          2843 | 
        
        
          | TV Sales Forecasting | 
          825190 | 
        
        
          | tweet_mask | 
          2428 | 
        
        
          | tweets | 
          25663131 | 
        
        
          | Tweets . | 
          113381 | 
        
        
          | Tweets Blogs News - Swiftkey Dataset 4million  | 
          574661177 | 
        
        
          | Tweets data | 
          113381 | 
        
        
          | Tweets Dataset | 
          419574 | 
        
        
          | Tweets from MG/BR | 
          401120 | 
        
        
          | Tweets from People Followed By Indian PM Modi | 
          31451955 | 
        
        
          | Tweets Targeting Isis | 
          29978624 | 
        
        
          | Twits DS Platzi | 
          44028 | 
        
        
          | Twitter feed1 | 
          1134950 | 
        
        
          | Twitter Friends | 
          448476867 | 
        
        
          | Twitter Italian Dialect Data | 
          16212242 | 
        
        
          | Twitter Sample | 
          122350791 | 
        
        
          | Twitter Sentiment Analysis | 
          3421431 | 
        
        
          | Twitter Test Feed | 
          1134950 | 
        
        
          | Twitter Text and Gender | 
          14 | 
        
        
          | Twitter trends/tweet for October 2017 | 
          454240652 | 
        
        
          | Twitter US Airline Sentiment | 
          8459511 | 
        
        
          | Twitter User Gender Classification | 
          8176739 | 
        
        
          | Twitter vs. Newsletter Impact | 
          3037 | 
        
        
          | twitter_senti | 
          1214458 | 
        
        
          | twitter_sentiment | 
          59096518 | 
        
        
          | twitter3 | 
          1236455 | 
        
        
          | TwitterTest | 
          59096510 | 
        
        
          | two demoisaic tot 1373 feats | 
          1292808 | 
        
        
          | Two features on Camera Model Identification | 
          138421 | 
        
        
          | Two Sigma | 
          21027219 | 
        
        
          | txt files 1287 | 
          328136 | 
        
        
          | Type Allocation Code (TAC) | 
          5966210 | 
        
        
          | u data  | 
          872574 | 
        
        
          | U.S. Charities and Non-profits | 
          288082208 | 
        
        
          | U.S. College Scorecard Data 1996-2015 | 
          203090705 | 
        
        
          | U.S. Commercial Aviation Industry Metrics | 
          1818640 | 
        
        
          | U.S. Educational Attainment [1995-2015] | 
          1102668 | 
        
        
          | U.S. Educational Finances | 
          84734393 | 
        
        
          | U.S. Federal Superfund Sites | 
          321300994 | 
        
        
          | U.S. Healthcare Data | 
          39941119 | 
        
        
          | U.S. Homicide Reports, 1980-2014 | 
          114173543 | 
        
        
          | U.S. Incomes by Occupation and Gender | 
          31336 | 
        
        
          | U.S. Major League Soccer Salaries | 
          207020 | 
        
        
          | U.S. News and World Report s College Data | 
          78070 | 
        
        
          | U.S. Opiate Prescriptions/Overdoses | 
          14408151 | 
        
        
          | U.S. Pollution Data | 
          400946718 | 
        
        
          | U.S. Public Pensions Data, fiscal years 2001-2016 | 
          2018611 | 
        
        
          | U.S. Technology Jobs on Dice.com | 
          61312870 | 
        
        
          | u.user | 
          22667 | 
        
        
          | UB data | 
          42802 | 
        
        
          | UB trip data | 
          42241 | 
        
        
          | UBER Drives | 
          86369 | 
        
        
          | Uber NYC Trips for 2016 | 
          122778 | 
        
        
          | Uber Pickups in New York City | 
          875036990 | 
        
        
          | Uber Request Data | 
          395061 | 
        
        
          | Uber Ride Reviews Dataset | 
          590621 | 
        
        
          | Ubudehe Livestock 1 | 
          10301108 | 
        
        
          | Ubuntu Dialogue Corpus | 
          2912261156 | 
        
        
          | UCDP Georeferenced Event Dataset | 
          70189068 | 
        
        
          | UCI Appliances energy prediction Data Set  | 
          1794429 | 
        
        
          | UCI Cardiotocography | 
          1743872 | 
        
        
          | UCI Communities and Crime Unnormalized Data Set | 
          665979 | 
        
        
          | UCI Daily and Sports Activities | 
          170800010 | 
        
        
          | UCI ML Air Quality Dataset | 
          795973 | 
        
        
          | UCI ML Datasets | 
          35644 | 
        
        
          | UCI Turkiye Student Evaluation Data Set  | 
          391968 | 
        
        
          | UCL Wine | 
          10782 | 
        
        
          | Udacity Titanic Data | 
          61194 | 
        
        
          | Udacity_AB_Testing_FinalProject_Data | 
          1125 | 
        
        
          | UdacityBrazilMedicalAppointments | 
          10739535 | 
        
        
          | UDAS loan information | 
          73215 | 
        
        
          | udemu data analysis jp case1 | 
          18267 | 
        
        
          | udemy data analytics case2 sec 6_2 | 
          910894 | 
        
        
          | udemy data analytics jp | 
          18267 | 
        
        
          | udemy data analytics jp case1 | 
          17721 | 
        
        
          | udemy data analytics jp case2 sec 6 | 
          705004 | 
        
        
          | udemy data analytics jp section 5_3 | 
          18267 | 
        
        
          | UDHR Corpus | 
          8939497 | 
        
        
          | UFC Fight Data | 
          2496234 | 
        
        
          | UFC Fight Data Refactored | 
          498896 | 
        
        
          | UFC Fights Data 1993 - 2/23/2016 | 
          2311143 | 
        
        
          | UFC PPV Sales | 
          6243 | 
        
        
          | UFO dont care | 
          5298425 | 
        
        
          | UFO leiud | 
          5277693 | 
        
        
          | UFO nähtused | 
          5105776 | 
        
        
          | UFO on päris | 
          5298772 | 
        
        
          | UFO sightings | 
          5105776 | 
        
        
          | UFO Sightings | 
          29278853 | 
        
        
          | UFO Sightings around the world | 
          13710798 | 
        
        
          | ufo sightseeing | 
          5636539 | 
        
        
          | ufo_reports | 
          668882 | 
        
        
          | ufo-sightings | 
          10712628 | 
        
        
          | ufosights | 
          5027080 | 
        
        
          | UjiIndoorLoc: An indoor localization dataset | 
          45107330 | 
        
        
          | UK 2016 Road Safety Data | 
          65756638 | 
        
        
          | UK Car Accidents 2005-2015 | 
          559530574 | 
        
        
          | UK Constituency Results | 
          107975 | 
        
        
          | UK fleet and foreign fleet landings by port | 
          84776078 | 
        
        
          | UK Government Wine Cellar Reports | 
          688300 | 
        
        
          | UK Housing Prices Paid | 
          2405685902 | 
        
        
          | UK Land Registry Transactions | 
          33230708 | 
        
        
          | UK road safety data | 
          514507530 | 
        
        
          | UK Traffic Counts | 
          1035851129 | 
        
        
          | UKDALE House 5 TV Usage | 
          4913602 | 
        
        
          | Ukrainian Parliament Daily Agenda Results | 
          266768943 | 
        
        
          | Ulaanbaatar zamnal data | 
          43062 | 
        
        
          | Ultimate 25k+ Matches Football Database -European | 
          313090048 | 
        
        
          | Ultimate Beastmaster: First Season | 
          29539 | 
        
        
          | UN data | 
          3487 | 
        
        
          | UN Gender Data | 
          357432 | 
        
        
          | UN General Assembly Votes, 1946-2015 | 
          37610910 | 
        
        
          | UN General Debates | 
          135121723 | 
        
        
          | UN HDI dataset | 
          11570 | 
        
        
          | UN Health Data | 
          102402 | 
        
        
          | Unated Nations Population median age | 
          16464 | 
        
        
          | unbalanced_clf | 
          10850066 | 
        
        
          | UnbalancedRiskDataset | 
          414216 | 
        
        
          | Uncompressed data | 
          196737128 | 
        
        
          | under dev | 
          25277993 | 
        
        
          | Under_Sampled_Exoplanet_FATS | 
          94802 | 
        
        
          | Undertale Music | 
          428931 | 
        
        
          | UNHCR Refugee Data | 
          41422282 | 
        
        
          | Unicode 10.0 Character Database in JSON | 
          30964929 | 
        
        
          | Unicode Samples | 
          643 | 
        
        
          | Unifesp AM Classes | 
          32318 | 
        
        
          | Uniform Gift Filling | 
          4053353 | 
        
        
          | Unilever 2000 2017 | 
          199278 | 
        
        
          | Unimorph | 
          1278027080 | 
        
        
          | Union Membership & Coverage | 
          450864 | 
        
        
          | uniparc_xref2ncbi_taxonomy_id | 
          1870487534 | 
        
        
          | Uniqlo (FastRetailing) Stock Price Prediction | 
          67962 | 
        
        
          | UniqueVehicleMakeModels | 
          5981 | 
        
        
          | United Nations General Debate Corpus | 
          135159808 | 
        
        
          | united nations world populations | 
          6786908 | 
        
        
          | United States Code | 
          619870742 | 
        
        
          | United States Commutes | 
          291821012 | 
        
        
          | United States crime rates by county | 
          345013 | 
        
        
          | United States Droughts by County | 
          263437911 | 
        
        
          | United States Energy, Census, and GDP 2010-2014 | 
          75526 | 
        
        
          | United States State Shapes | 
          23358977 | 
        
        
          | United States Trademark Applications | 
          219838100 | 
        
        
          | Universal Product Code Database | 
          62604775 | 
        
        
          | Universal Tagset | 
          37147 | 
        
        
          | Universal Treebank | 
          119113962 | 
        
        
          | University of Waterloo Student Demographics | 
          593234 | 
        
        
          | University programs information of unis in Lahore  | 
          83337 | 
        
        
          | University Rankings | 
          186384 | 
        
        
          | Unix Words | 
          2498552 | 
        
        
          | unknown | 
          137160 | 
        
        
          | Unkown Data | 
          45278227 | 
        
        
          | Unofficial Holidays | 
          19245 | 
        
        
          | unsafe urls | 
          245079491 | 
        
        
          | unsample | 
          409326773 | 
        
        
          | unsample_2 | 
          409110512 | 
        
        
          | unstemed | 
          1427 | 
        
        
          | unzip_tsv | 
          196737128 | 
        
        
          | Unzipped | 
          2 | 
        
        
          | unzipped data | 
          514507530 | 
        
        
          | Unzipped file | 
          4933794 | 
        
        
          | Unzipped Oil csv | 
          20580 | 
        
        
          | unzipped-raw | 
          78025130 | 
        
        
          | UPC_creditcard_default-payment | 
          2862995 | 
        
        
          | update dataset | 
          28879944 | 
        
        
          | updated | 
          93723293 | 
        
        
          | updatedata | 
          90249030 | 
        
        
          | upload | 
          7463819 | 
        
        
          | upload_pred | 
          16659614 | 
        
        
          | UploadedData | 
          2161900092 | 
        
        
          | uploadtest | 
          15570 | 
        
        
          | Urban and Rural Photos | 
          3272392 | 
        
        
          | Urban Dictionary Terms | 
          1099750 | 
        
        
          | Urban Dictionary Words And Definitions | 
          249154499 | 
        
        
          | urban land cover/testing | 
          412022 | 
        
        
          | Urdu Speech Dataset | 
          41464533 | 
        
        
          | Urdu Stopwords List | 
          11674 | 
        
        
          | Urdu-Nepali Parallel Corpus | 
          6285620 | 
        
        
          | URL Database | 
          255803 | 
        
        
          | US ACS Financial Hedging Features | 
          5398411 | 
        
        
          | US Adult Income | 
          5977458 | 
        
        
          | US Baby Names | 
          181758519 | 
        
        
          | US campsites | 
          8831764 | 
        
        
          | US Candy Production by Month | 
          10740 | 
        
        
          | US Casualties of the Korean War | 
          7085940 | 
        
        
          | US Casualties of the Vietnam War | 
          25328211 | 
        
        
          | US Census Bureau County Data 1980-1990 | 
          881066 | 
        
        
          | US Census Demographic Data | 
          5903488 | 
        
        
          | US Census Population Data (County Level) 1970-2014 | 
          2518181 | 
        
        
          | US Chronic Disease Indicators | 
          122899180 | 
        
        
          | US College Sailing Results | 
          86621612 | 
        
        
          | US Consumer Finance Complaints | 
          378460129 | 
        
        
          | US County Info with smoking ban | 
          3984620 | 
        
        
          | US County Premature Mortality Rate | 
          361394 | 
        
        
          | US county-level mortality | 
          25052207 | 
        
        
          | US Demographics | 
          623 | 
        
        
          | US Dept of Education: College Scorecard | 
          4201314992 | 
        
        
          | US DOT Large Truck and Bus Crash Data | 
          4220 | 
        
        
          | US Energy Statistics | 
          955567524 | 
        
        
          | US Facility-Level Air Pollution (2010-2014) | 
          6462128 | 
        
        
          | US Flight Delay | 
          412132322 | 
        
        
          | US Gross Rent ACS Statistics | 
          5724068 | 
        
        
          | US Household Income Statistics | 
          5857882 | 
        
        
          | US Input-Output Tables | 
          1624770 | 
        
        
          | US jobs on Monster.com | 
          68388810 | 
        
        
          | US Mass Shootings | 
          138231 | 
        
        
          | US Mass Shootings  | 
          695203 | 
        
        
          | US Mass Shootings Dataset v2 Clean | 
          138506 | 
        
        
          | US Mass Shootings NaN coordinates fixed | 
          153656 | 
        
        
          | US Metropolitan population density 2016 | 
          24928 | 
        
        
          | US Permanent Visa Applications | 
          298624850 | 
        
        
          | US Population By Zip Code | 
          117755673 | 
        
        
          | US President Campaign Spending | 
          3200 | 
        
        
          | US Presidential Elections 10 States Comparison | 
          1003 | 
        
        
          | US PRESIDENTS | 
          6179 | 
        
        
          | US Presidents heights: How low can u go? | 
          1008 | 
        
        
          | US regions | 
          1779 | 
        
        
          | US Representation by Zip Code | 
          239200351 | 
        
        
          | US state county name & codes | 
          127459 | 
        
        
          | US States - Cartographic Boundary Shapefiles | 
          8506126 | 
        
        
          | US Stocks Fundamentals (XBRL) | 
          151728124 | 
        
        
          | US Supreme Court Cases, 1946-2016 | 
          2642816 | 
        
        
          | US Tariff Rates | 
          9083109 | 
        
        
          | US tourism | 
          208 | 
        
        
          | US Trademark Case Files, 1870-2016 | 
          4440647001 | 
        
        
          | US Traffic Violations - Montgomery County Police | 
          367888303 | 
        
        
          | US Traffic, 2015 | 
          467378913 | 
        
        
          | US Unemployment Rate by County, 1990-2016 | 
          80447850 | 
        
        
          | US Veteran Suicides | 
          59031 | 
        
        
          | US zip codes with lat and long | 
          928044 | 
        
        
          | US_Industrial_Prodcution | 
          11086 | 
        
        
          | US-based job data set from 300+ companies | 
          73499355 | 
        
        
          | US-based Jobs from Dice.com | 
          17302872 | 
        
        
          | us-states | 
          87739 | 
        
        
          | USA HOUSE PRICES  | 
          726209 | 
        
        
          | USA Housing | 
          726209 | 
        
        
          | USA Housing dataset | 
          915002 | 
        
        
          | USA Income Tax Data by ZIP Code, 2014 | 
          167426476 | 
        
        
          | USA lat,long for state abbreviations | 
          1885 | 
        
        
          | USA Map Shape | 
          2360011 | 
        
        
          | USA PollingData | 
          4081 | 
        
        
          | USA Unemployment Rate from 1989 to 2017 | 
          1618 | 
        
        
          | USA_Housing | 
          726209 | 
        
        
          | USA_Housing.csv | 
          726209 | 
        
        
          | Usable Oil Prices: Simple Price Imputation | 
          142793 | 
        
        
          | usagov | 
          1833108 | 
        
        
          | uscrimes | 
          5107 | 
        
        
          | USD Vs INR in past 10 year | 
          293 | 
        
        
          | USDA plant database | 
          2282563 | 
        
        
          | USDA PLANTS Checklist | 
          6780700 | 
        
        
          | useBySELF | 
          3087508 | 
        
        
          | Used car offers | 
          33157763 | 
        
        
          | Used cars database | 
          68541275 | 
        
        
          | Used CARS retailer in US database | 
          1288198 | 
        
        
          | User Information | 
          119535551 | 
        
        
          | User Ratings for Movies | 
          3989514 | 
        
        
          | user_logs_filtrados | 
          119767170 | 
        
        
          | userdata | 
          1529669 | 
        
        
          | userlog file | 
          435478250 | 
        
        
          | userlogs | 
          18795855 | 
        
        
          | Users data | 
          991 | 
        
        
          | Users mobile banking transaction frequency | 
          317818 | 
        
        
          | USHousingData_PricePrediction | 
          2337942 | 
        
        
          | USP_lie_to_me | 
          888391 | 
        
        
          | Uttar Pradesh Assembly Elections 2017 | 
          298535 | 
        
        
          | uuiuvc | 
          460 | 
        
        
          | UZ_vagon | 
          7590534 | 
        
        
          | v2 Church Inventory | 
          18678 | 
        
        
          | v2aug24 | 
          4614238 | 
        
        
          | V2PizzaData | 
          318851 | 
        
        
          | v81 Mercari restored brand names | 
          17415182 | 
        
        
          | Vacation rental properties in Palm Springs, CA | 
          21565117 | 
        
        
          | Vader Lexicon | 
          434147 | 
        
        
          | validdatacv5 | 
          4871570 | 
        
        
          | variability in the poverty rate in the US counties | 
          3889674 | 
        
        
          | VAT thermal | 
          5 | 
        
        
          | Vatalu | 
          8782 | 
        
        
          | Vectorized Handwritten Digits | 
          105298 | 
        
        
          | Vegetarian & Vegan Restaurants | 
          82666666 | 
        
        
          | Vehicle and Tire Recalls, 1967-Present | 
          19594636 | 
        
        
          | Vehicle Collisions in NYC, 2015-Present | 
          89553269 | 
        
        
          | Vehicle Fuel Economy | 
          18001687 | 
        
        
          | Vehicle Fuel Economy Estimates, 1984-2017 | 
          11731914 | 
        
        
          | Vehicle Movements Datasets | 
          14256788 | 
        
        
          | Vehicles - Nepal | 
          24607221 | 
        
        
          | Vehicles Colombia (Fasecolda) | 
          3446067 | 
        
        
          | Venues in New York City | 
          1781262 | 
        
        
          | VerbNet | 
          2474526 | 
        
        
          | Version_2 | 
          340861583 | 
        
        
          | version23 | 
          3074296 | 
        
        
          | very small test data | 
          10 | 
        
        
          | Vgg__19 | 
          7377 | 
        
        
          | vgg_bestmodel | 
          184459 | 
        
        
          | VGG-11 | 
          493415465 | 
        
        
          | VGG-11 with batch normalization | 
          493733956 | 
        
        
          | VGG-13 | 
          494116563 | 
        
        
          | VGG-13 with batch normalization | 
          494374395 | 
        
        
          | VGG-16 | 
          513596671 | 
        
        
          | VGG-16  | 
          568494657 | 
        
        
          | VGG-16 weights | 
          54730390 | 
        
        
          | VGG-16 with batch normalization | 
          514090234 | 
        
        
          | VGG-19 | 
          533106572 | 
        
        
          | VGG-19 | 
          608022600 | 
        
        
          | VGG-19 with batch normalization | 
          534106491 | 
        
        
          | VGG16 imagenet model | 
          58889256 | 
        
        
          | VGG16_Keras | 
          58889256 | 
        
        
          | VGG16_npy | 
          514146600 | 
        
        
          | vgg16_weights | 
          54730390 | 
        
        
          | vgg16_weights | 
          58889256 | 
        
        
          | vgg16_weights_tf | 
          58889256 | 
        
        
          | vgg166finetune | 
          59377447 | 
        
        
          | vgg16wgts | 
          54730390 | 
        
        
          | vgsaleeeeee | 
          357308 | 
        
        
          | vgsales | 
          364519 | 
        
        
          | vgsales.csv | 
          391429 | 
        
        
          | vgsales2.csv | 
          390187 | 
        
        
          | victoire | 
          7535648 | 
        
        
          | victor_kagglemix | 
          10086186 | 
        
        
          | Video Game Sales | 
          1355781 | 
        
        
          | Video Game Sales and Ratings | 
          1515957 | 
        
        
          | Video Game Sales with Ratings | 
          1618040 | 
        
        
          | Video_Games_Sales_as_at_22_Dec_2016.csv | 
          1618040 | 
        
        
          | VideoGameSales | 
          390246 | 
        
        
          | Vietnam War Bombing Operations | 
          1625116690 | 
        
        
          | Viewing Solar Flares | 
          1595094 | 
        
        
          | vijaytta | 
          89823 | 
        
        
          | Vincent van Gogh's paintings | 
          122355 | 
        
        
          | vinos y crimenes | 
          1349 | 
        
        
          | virginie_do | 
          2387182 | 
        
        
          | Virtual Reality Driving Simulator Dataset | 
          29739136 | 
        
        
          | virugadde | 
          133490 | 
        
        
          | Visa Free Travel by Citizenship, 2016 | 
          4699 | 
        
        
          | Visitors data of facebook movie fan group kinofan | 
          1249917 | 
        
        
          | visualisation.py | 
          2287 | 
        
        
          | visualization | 
          16400 | 
        
        
          | Visualization_Tests | 
          282 | 
        
        
          | visualizations | 
          201851 | 
        
        
          | VIX2017 | 
          9189 | 
        
        
          | vizualizations | 
          201851 | 
        
        
          | vocabfile | 
          1716265 | 
        
        
          | vocimages | 
          1294820 | 
        
        
          | voice and speech | 
          415116 | 
        
        
          | Voice Data Recognition | 
          415116 | 
        
        
          | Voice Recognition | 
          746155 | 
        
        
          | voice_gender_prediction | 
          415116 | 
        
        
          | Volcanic Eruptions in the Holocene Period | 
          259712 | 
        
        
          | voting data of congressmen for various bills(1980) | 
          19818 | 
        
        
          | VOTP Dataset | 
          296543330 | 
        
        
          | Vowpal Wabbit tutorial | 
          93691305 | 
        
        
          | VR games list | 
          20455 | 
        
        
          | Vselection | 
          270 | 
        
        
          | VXXData | 
          4620 | 
        
        
          | w245ertrgdfgewrt | 
          1635878 | 
        
        
          | w2v_tutorial_data | 
          27649993 | 
        
        
          | w2v_tutorial_data_labelled | 
          13788274 | 
        
        
          | Wage Estimates | 
          62865165 | 
        
        
          | Wages Dataset | 
          62250 | 
        
        
          | wallmart sales forecast datasets | 
          3937026 | 
        
        
          | walmart | 
          4210412 | 
        
        
          | Walmart Data | 
          869537 | 
        
        
          | Walmart Sales | 
          1397246 | 
        
        
          | Walmart_files | 
          4210412 | 
        
        
          | War_and_Peace | 
          610926 | 
        
        
          | Wars by death tolls | 
          9328 | 
        
        
          | warwar | 
          610926 | 
        
        
          | Water Conservation Supplier Compliance | 
          42080 | 
        
        
          | Water Consumption in a Median Size City | 
          47122790 | 
        
        
          | Water Levels in Venezia, Italia | 
          12621914 | 
        
        
          | water pump | 
          26233863 | 
        
        
          | waterimage | 
          942965 | 
        
        
          | WDPA_Nov2017 | 
          9705377 | 
        
        
          | wearable motion sensors | 
          427319 | 
        
        
          | Weather | 
          7927 | 
        
        
          | Weather | 
          262144000 | 
        
        
          | WEATHER ANALYSIS | 
          79935 | 
        
        
          | Weather Conditions in World War Two | 
          11246918 | 
        
        
          | Weather Data - Boston (Jul 2012 - Aug 2015) | 
          30649 | 
        
        
          | Weather Data for Recruit Restaurant Competition | 
          11851553 | 
        
        
          | Weather data in New York City - 2016 | 
          11147 | 
        
        
          | Weather Dataset | 
          2342515 | 
        
        
          | Weather DataSet for RV Challenge | 
          181835 | 
        
        
          | Weather dataset from the R rattle package | 
          4140278 | 
        
        
          | Weather datasets | 
          533144 | 
        
        
          | Weather in Szeged 2006-2016 | 
          16294377 | 
        
        
          | Weather Madrid 1997 - 2015 | 
          528914 | 
        
        
          | Weather Modified | 
          226234 | 
        
        
          | Weather on terrorism | 
          37725880 | 
        
        
          | Weather Undergroud | 
          7927 | 
        
        
          | Weather Underground | 
          7927 | 
        
        
          | weather_data_perMinute | 
          27425604 | 
        
        
          | weather-data | 
          171621 | 
        
        
          | weather.csv | 
          29462 | 
        
        
          | Web crawler for real estate market | 
          349166 | 
        
        
          | Web Text Corpus | 
          1726918 | 
        
        
          | Web Traffic Time Series Forecasting | 
          40689209 | 
        
        
          | Web visitor interests | 
          3123645 | 
        
        
          | Webster 2009  | 
          57936 | 
        
        
          | weekly | 
          28890 | 
        
        
          | Weekly Corn Price | 
          20178 | 
        
        
          | Weekly Dairy Product Prices | 
          357629 | 
        
        
          | Weekly Gold Close Price 2015-2017 | 
          8134 | 
        
        
          | Weekly Return Data of Nifty, Gold and Oil | 
          36987 | 
        
        
          | Weekly Sales Transactions | 
          317399 | 
        
        
          | weekly2 | 
          36895 | 
        
        
          | WEFEFFFFFFFFFFFFFS | 
          187487694 | 
        
        
          | wefwefwefwefwef | 
          2311143 | 
        
        
          | weightavg | 
          1251231 | 
        
        
          | Weights | 
          175313142 | 
        
        
          | weights | 
          54730390 | 
        
        
          | Weights | 
          28367863 | 
        
        
          | Weights | 
          79592 | 
        
        
          | weights | 
          64553152 | 
        
        
          | weights | 
          1888776 | 
        
        
          | weights | 
          7603 | 
        
        
          | Weights for ResNet50 for this competition | 
          274819726 | 
        
        
          | weights2e | 
          22857356 | 
        
        
          | Weigths | 
          79592 | 
        
        
          | Weizmann HAR | 
          335582657 | 
        
        
          | Weka German Credit | 
          139018 | 
        
        
          | Welfare Error Rates | 
          4261 | 
        
        
          | wh_ensemble | 
          2435093 | 
        
        
          | wh_ensemble11 | 
          2435093 | 
        
        
          | wh_ensemble12 | 
          1940007 | 
        
        
          | whaledetection-ng | 
          721212 | 
        
        
          | whaledetection-rg | 
          720686 | 
        
        
          | What is a note? | 
          14698728 | 
        
        
          | What people purchase | 
          203510 | 
        
        
          | What.CD Hip Hop | 
          10727424 | 
        
        
          | What's On The Menu? | 
          152680773 | 
        
        
          | whatsappchat | 
          5006 | 
        
        
          | WhatsAppGroupChat | 
          5006 | 
        
        
          | When do children learn words? | 
          78657 | 
        
        
          | Where it Pays to Attend College | 
          74222 | 
        
        
          | Where's Waldo | 
          131409856 | 
        
        
          | White House Salaries | 
          397813 | 
        
        
          | whitebelt  | 
          708633 | 
        
        
          | WHO data | 
          16400 | 
        
        
          | WHO dataset just for fun | 
          16400 | 
        
        
          | Who Dies? Physics Puzzle Dataset | 
          382271757 | 
        
        
          | Who eats the food we grow? | 
          894612 | 
        
        
          | WHO Insufficiently active | 
          25167 | 
        
        
          | Who starts and who debunks rumors | 
          9619509 | 
        
        
          | Who's the Boss? People with Significant Control | 
          3474121431 | 
        
        
          | Whole Foods | 
          64214 | 
        
        
          | whycannotupdate | 
          6298003 | 
        
        
          | Wiki Words | 
          949663 | 
        
        
          | WIKI_OUT | 
          17083327 | 
        
        
          | wiki-mitx | 
          435355 | 
        
        
          | wiki-news-300d-1M.vec | 
          689870086 | 
        
        
          | Wikidata Property Ranking | 
          393784 | 
        
        
          | Wikipedia | 
          435355 | 
        
        
          | Wikipedia Article Titles | 
          310654639 | 
        
        
          | Wikipedia country population, currencies | 
          22747 | 
        
        
          | Wikipedia Edits | 
          121089 | 
        
        
          | wikitext-2 | 
          4783336 | 
        
        
          | wild-fire | 
          8370931 | 
        
        
          | winapps-challenge | 
          427291 | 
        
        
          | Wind data | 
          13509 | 
        
        
          | Wind Farms | 
          12911849 | 
        
        
          | Wind Predictions | 
          138090 | 
        
        
          | wind_data5 | 
          12584 | 
        
        
          | winddata | 
          539150 | 
        
        
          | Wine Dataset | 
          1170 | 
        
        
          | Wine dataset - Unsupervised Algorithms | 
          10782 | 
        
        
          | Wine Industry | 
          1440098 | 
        
        
          | Wine Quality | 
          391892 | 
        
        
          | wine quality selection | 
          355068 | 
        
        
          | Wine Reviews | 
          53336217 | 
        
        
          | wine_data.csv | 
          10958 | 
        
        
          | Winedataqualitypractice | 
          231073 | 
        
        
          | WineDataset | 
          11304 | 
        
        
          | WineDataset | 
          1040 | 
        
        
          | WineDatasetHeaders | 
          11480 | 
        
        
          | Winemagazine_IE_students | 
          17330448 | 
        
        
          | winequality-red | 
          84199 | 
        
        
          | winequality-red | 
          84199 | 
        
        
          | winequality-red | 
          84199 | 
        
        
          | wines_properties | 
          11462 | 
        
        
          | WIP DATASET TBC | 
          7980 | 
        
        
          | wiscbcdata | 
          125093 | 
        
        
          | Wisconsin Breast Cancer Database | 
          20057 | 
        
        
          | With coordinates | 
          3680819 | 
        
        
          | withalldummies | 
          7233614 | 
        
        
          | withdtiratio | 
          4080912 | 
        
        
          | without dummy | 
          4187788 | 
        
        
          | withratio | 
          6071712 | 
        
        
          | WL-DubDub | 
          11 | 
        
        
          | WMO Hurricane Survival Dataset | 
          974161 | 
        
        
          | WMT15 Evaluation | 
          1247631 | 
        
        
          | WNBA Player stats Season 2016-2017 | 
          20793 | 
        
        
          | Woebot Responses | 
          43798 | 
        
        
          | Women and Child Model | 
          3589 | 
        
        
          | Women Shoes | 
          7441975 | 
        
        
          | Women's Shoe Prices | 
          107048266 | 
        
        
          | Women's Tennis Association Matches | 
          9277027 | 
        
        
          | Wonderland | 
          3325833 | 
        
        
          | Woodbine Horse Racing Results | 
          1392158 | 
        
        
          | Word clouds | 
          103808 | 
        
        
          | Word Hypernyms | 
          31575 | 
        
        
          | Word in French | 
          25851677 | 
        
        
          | Word Occurrences in Movies | 
          1388438 | 
        
        
          | Word Occurrences in Mr. Robot | 
          322208 | 
        
        
          | Word Occurrences in Shakespeare  | 
          404735 | 
        
        
          | word vector | 
          39746350 | 
        
        
          | word vector 2 | 
          31407499 | 
        
        
          | Word vector test questions | 
          603955 | 
        
        
          | word_cloud_picture | 
          30788 | 
        
        
          | word-cloud-picture | 
          30788 | 
        
        
          | Word2Vec | 
          14971180 | 
        
        
          | Word2Vec | 
          135847466 | 
        
        
          | Word2vec | 
          67281491 | 
        
        
          | Word2Vec Google | 
          1760925994 | 
        
        
          | word2vec model | 
          1760925994 | 
        
        
          | Word2Vec Sample | 
          138432415 | 
        
        
          | Word2Vec tutorial - Suite | 
          133845411 | 
        
        
          | word2vec_Google | 
          1760925994 | 
        
        
          | word2vec_model | 
          1760925994 | 
        
        
          | wordbatch | 
          2243245 | 
        
        
          | wordbatch | 
          2243245 | 
        
        
          | wordbatch | 
          603397 | 
        
        
          | wordbatch | 
          2243245 | 
        
        
          | wordbatch | 
          2254833 | 
        
        
          | wordbatch | 
          2243245 | 
        
        
          | wordbatch | 
          2254833 | 
        
        
          | wordbatch | 
          2243245 | 
        
        
          | WordBatch | 
          2246473 | 
        
        
          | wordbatch | 
          2243245 | 
        
        
          | wordcloud | 
          257461 | 
        
        
          | Wordgame | 
          8630880 | 
        
        
          | WordNet | 
          70574350 | 
        
        
          | words_recognition | 
          3411890296 | 
        
        
          | workbatch | 
          2243245 | 
        
        
          | workbook1 | 
          21274 | 
        
        
          | Workers Browser Activity in CrowdFlower Tasks | 
          10759715 | 
        
        
          | Working rate | 
          922 | 
        
        
          | working with code quality metrics | 
          93723293 | 
        
        
          | working_blend | 
          7976972 | 
        
        
          | working_blend_2 | 
          7976236 | 
        
        
          | working_blend_3 | 
          7977044 | 
        
        
          | World Atlas of Language Structures | 
          13493201 | 
        
        
          | World Bank : World Development Index | 
          44701 | 
        
        
          | World Bank Youth Unemployment Rates | 
          17145 | 
        
        
          | World Bank:World Develpment Index DataSet | 
          44701 | 
        
        
          | World Bank's Major Contracts  | 
          53817900 | 
        
        
          | World Cities | 
          872568 | 
        
        
          | World Cities Database | 
          164327399 | 
        
        
          | World Cities Population and Location | 
          5793670 | 
        
        
          | World Color Survey | 
          12129809 | 
        
        
          | World Continent-Country Codes | 
          5224 | 
        
        
          | World Countries and Continents Details | 
          48076 | 
        
        
          | World Countrywise Population Data 1980 - 2010 | 
          59344 | 
        
        
          | World Demographics | 
          634880 | 
        
        
          | World Development Indicators | 
          245856498 | 
        
        
          | World Development Indicators | 
          2042307823 | 
        
        
          | World Factbook Country Profiles | 
          6973424 | 
        
        
          | World Flags | 
          254068 | 
        
        
          | World Gender Statistics | 
          80188494 | 
        
        
          | World Glacier Inventory | 
          17249601 | 
        
        
          | World happiness | 
          17132 | 
        
        
          | World Happiness Analysis | 
          29530 | 
        
        
          | World Happiness Excercise | 
          7196 | 
        
        
          | world happiness report | 
          22743 | 
        
        
          | World Happiness Report | 
          63225 | 
        
        
          | World Language Family Map | 
          207749813 | 
        
        
          | World of Warcraft Avatar History | 
          643669597 | 
        
        
          | World of Warcraft Demographics | 
          13622 | 
        
        
          | World Population | 
          134321 | 
        
        
          | World Population | 
          1344962 | 
        
        
          | World Population | 
          287706 | 
        
        
          | World Population Historical (Predictive) | 
          6584 | 
        
        
          | World Population Predictions | 
          707668 | 
        
        
          | World Soccer - archive of soccer results and odds | 
          14620926 | 
        
        
          | World Tennis Odds Database | 
          51572422 | 
        
        
          | World university rankings | 
          186384 | 
        
        
          | World University Rankings | 
          11999397 | 
        
        
          | World War 2 Weather Dataset | 
          21648 | 
        
        
          | World´s largest economies | 
          724 | 
        
        
          | world_countries | 
          252692 | 
        
        
          | World_Happiness Report_2017 | 
          29536 | 
        
        
          | World_Happiness_Madhavi | 
          7196 | 
        
        
          | world-cities | 
          872568 | 
        
        
          | world-countries | 
          252515 | 
        
        
          | world-countries.json | 
          252515 | 
        
        
          | World's Highest Mountains | 
          13009 | 
        
        
          | worldcountries | 
          252504 | 
        
        
          | Worldnews on Reddit from 2008 to Today | 
          82161571 | 
        
        
          | WorldPopulation | 
          134321 | 
        
        
          | Worldwide Economic Remittances | 
          515524 | 
        
        
          | WOW air tours as of 2018 | 
          5867516 | 
        
        
          | wrod2vec_twitter_50d | 
          214231913 | 
        
        
          | wrod2vec-twitter-25d | 
          112330277 | 
        
        
          | wsdm data | 
          235891409 | 
        
        
          | wsdm lgbm | 
          246043422 | 
        
        
          | wsdm test | 
          608805921 | 
        
        
          | WSDM_KKBOX | 
          737403492 | 
        
        
          | WSDM-Music | 
          740949351 | 
        
        
          | WTA Matches and Rankings | 
          20720193 | 
        
        
          | wu-ensemble11 | 
          2531038 | 
        
        
          | WUZZUF Job Posts (2014-2016) | 
          137386426 | 
        
        
          | WWI Bombing Operations | 
          1422071 | 
        
        
          | wwrtrgfnvbhgv | 
          28627 | 
        
        
          | wwwwww | 
          4072076 | 
        
        
          | wwwwww | 
          2245108 | 
        
        
          | wwwwwwwww | 
          14291742 | 
        
        
          | Wyckford Basic | 
          4865 | 
        
        
          | x_train | 
          54225842 | 
        
        
          | x_val_re | 
          8981920 | 
        
        
          | x-test | 
          8952997 | 
        
        
          | Xception | 
          162488266 | 
        
        
          | XG_Contour | 
          247223 | 
        
        
          | XGB Submit | 
          14511189 | 
        
        
          | xgb_30011 | 
          662096 | 
        
        
          | xgb_lgb_best | 
          5898826 | 
        
        
          | xgb_model | 
          342531 | 
        
        
          | xgb_submission | 
          6273722 | 
        
        
          | xgb_submission | 
          13618373 | 
        
        
          | xgb_submit | 
          6273722 | 
        
        
          | xgb_submit | 
          14511189 | 
        
        
          | xgb_support_CFav | 
          16960582 | 
        
        
          | xgb_valid_preds_public | 
          3398480 | 
        
        
          | xgb.fmap | 
          356 | 
        
        
          | xgbname | 
          7519435 | 
        
        
          | xgbname2 | 
          5739462 | 
        
        
          | xgboost_yisu | 
          7493399 | 
        
        
          | xgboost-practice | 
          4304184 | 
        
        
          | xgboost1 | 
          1584533 | 
        
        
          | XGboostCVLB284 | 
          11028 | 
        
        
          | xgbost32 | 
          7291826 | 
        
        
          | XGBPlus | 
          9834641 | 
        
        
          | xiangku  | 
          44234355 | 
        
        
          | xinjiang(Predictive Maintenance) | 
          88790835 | 
        
        
          | XOM_txt | 
          4586 | 
        
        
          | XOM_Txt2 | 
          4857 | 
        
        
          | XOMData | 
          4857 | 
        
        
          | XRP and BTC | 
          1108006 | 
        
        
          | <"xss'asdasd | 
          8 | 
        
        
          | Xtrain | 
          70000519 | 
        
        
          | xxtestonq | 
          763156 | 
        
        
          | XXX Housing Data | 
          18853 | 
        
        
          | XXXPropertyData | 
          4844 | 
        
        
          | Y Combinator Companies | 
          125369 | 
        
        
          | Y prédictions | 
          892434 | 
        
        
          | y_train | 
          16683740 | 
        
        
          | y_val_re | 
          2776283 | 
        
        
          | YCOE Corpus | 
          277 | 
        
        
          | Year vs Number of emails - Enron Emails | 
          9697 | 
        
        
          | Years of experience and Salary dataset  | 
          454 | 
        
        
          | Yellow Pages of Pakistan | 
          8970140 | 
        
        
          | yelp data for natural language processing | 
          3656621 | 
        
        
          | Yelp Reviews | 
          68806 | 
        
        
          | Yelp Reviews 1000 | 
          759135 | 
        
        
          | yelp_review | 
          3656621 | 
        
        
          | Yelp-100000-reviews | 
          30821961 | 
        
        
          | yelp-review-tail-1000 | 
          773722 | 
        
        
          | yolo_model | 
          189265019 | 
        
        
          | Young People Survey | 
          458740 | 
        
        
          | YouTube Comedy Slam | 
          33607350 | 
        
        
          | YouTube Faces With Facial Keypoints | 
          10510217344 | 
        
        
          | Youtube SPAM CLASSIFIED-COMMENTS | 
          341738 | 
        
        
          | Yucata Season 1 Raw Data | 
          37024 | 
        
        
          | yytutu | 
          15991536 | 
        
        
          | Zapatos | 
          7441975 | 
        
        
          | zetasantagiftscore | 
          4042518 | 
        
        
          | zhaibowen_1 | 
          7265181 | 
        
        
          | zhaibowen_10 | 
          7276229 | 
        
        
          | zhaibowen_11 | 
          7272112 | 
        
        
          | zhaibowen_11 | 
          7276369 | 
        
        
          | zhaibowen_1229_1 | 
          7270411 | 
        
        
          | zhaibowen_171228_1 | 
          7266182 | 
        
        
          | zhaibowen_171231_1 | 
          7278103 | 
        
        
          | zhaibowen_180107_4 | 
          7266292 | 
        
        
          | zhaibowen_180108_1 | 
          7977768 | 
        
        
          | zhaibowen_180108_2 | 
          7979616 | 
        
        
          | zhaibowen_180112 | 
          7981135 | 
        
        
          | zhaibowen_180116 | 
          7981289 | 
        
        
          | zhaibowen_2 | 
          7277005 | 
        
        
          | zhaibowen_3 | 
          7277005 | 
        
        
          | zhaibowen_4 | 
          7279277 | 
        
        
          | zhaibowen_5 | 
          7279622 | 
        
        
          | zhaibowen_6 | 
          7277005 | 
        
        
          | zhaibowen_7 | 
          7276252 | 
        
        
          | zhaibowen_8 | 
          7275371 | 
        
        
          | zhaibowen_9 | 
          7273349 | 
        
        
          | Zika Virus Epidemic | 
          11662539 | 
        
        
          | zillow | 
          18652182 | 
        
        
          | zillow | 
          35494318 | 
        
        
          | Zillow Economics Data | 
          527680809 | 
        
        
          | Zillow Rent Index, 2010-Present | 
          10725975 | 
        
        
          | zillowzestimate_original_IMPUTED_BY_JB_2.4.csv | 
          35494318 | 
        
        
          | Zip Codes and Stats | 
          945774 | 
        
        
          | ZIPfiles | 
          554536109 | 
        
        
          | ZKIT ORG | 
          30208 | 
        
        
          | zombie | 
          684186 | 
        
        
          | zoningpolygon | 
          2293495 | 
        
        
          | Zoo Animal Classification | 
          5331 | 
        
        
          | "Zwarte Piet" Tweets | 
          1949268 | 
        
        
          | ZwidosTweets | 
          28043 | 
        
        
          | zzself | 
          34574009 | 
        
        
            
           | 
          31802982 | 
        
        
            
           | 
          566778 | 
        
        
            
           | 
          199587 | 
        
        
            
           | 
          346 | 
        
        
          |  King County data | 
          874920 | 
        
        
          |  King County  | 
          861852 | 
        
        
            
           | 
          1433727 | 
        
        
          |  taiwan data | 
          7837 | 
        
        
            
           | 
          566778 | 
        
        
          |  :: Job  | 
          3989247 | 
        
        
            
           | 
          61627 | 
        
        
          | ********* | 
          7313709 | 
        
        
           
           | 
          20545475 | 
        
        
           
           | 
          9217261 | 
        
        
          | ...... | 
          29953584 | 
        
        
          | 0.1400 | 
          206347 | 
        
        
          | 0.609034_0.608800_submission | 
          7412065 | 
        
        
          | 0.85933376.csv | 
          4082718 | 
        
        
          | 0.9336273678.csv | 
          4071836 | 
        
        
          | 01-train | 
          156 | 
        
        
          | 01040123 | 
          7374315 | 
        
        
          | 0105nn1000hl3hl | 
          82671011 | 
        
        
          | 0623-goodsprice | 
          1846250 | 
        
        
          | 081617 | 
          202743 | 
        
        
          | 0a7c2a8d_nohash_0.wav | 
          32044 | 
        
        
          | 0b443cc3ab8dabf57b37cb8d9879107cc54efd989 | 
          6830160 | 
        
        
          | 1 M+ Real Time stock market data [NSE/BSE] | 
          221599816 | 
        
        
          | 1 million Sudoku games | 
          164000018 | 
        
        
          | 1.2 Million Used Car Listings  | 
          146679503 | 
        
        
          | 1.6M accidents & traffic flow over 16 years | 
          651439827 | 
        
        
          | 1.88 Million US Wildfires | 
          795785216 | 
        
        
          | 10_sub_for_ensemble | 
          2283447 | 
        
        
          | 100,000 Random Internet Domain Names | 
          1799672 | 
        
        
          | 1000 Camera Specs | 
          87053 | 
        
        
          | 1000 Cameras Dataset | 
          86961 | 
        
        
          | 1000 Cameras Dataset(Source:Kaggle) | 
          86961 | 
        
        
          | 1000 Genome Data for Complete Beginners | 
          277313 | 
        
        
          | 1000 Netflix Shows | 
          89054 | 
        
        
          | 1000 parallel sentences | 
          276751 | 
        
        
          | 1000 sentences Canadian parliament  | 
          231295 | 
        
        
          | 100K Coursera's Course Reviews Dataset | 
          40792183 | 
        
        
          | 101 Innovations - Research Tools Survey | 
          28569675 | 
        
        
          | 111111 | 
          7365405 | 
        
        
          | 120 Million Word Spanish Corpus | 
          677861666 | 
        
        
          | 12306 captcha image | 
          97558955 | 
        
        
          | 123123 | 
          7316122 | 
        
        
          | 123124 | 
          7392318 | 
        
        
          | 123125 | 
          7442329 | 
        
        
          | 123126 | 
          7469538 | 
        
        
          | 123456 | 
          3073 | 
        
        
          | 125,000 Reddit Comments about Diabetes | 
          64439505 | 
        
        
          | 13,000 Screen Capture Images + How to Get More | 
          522472158 | 
        
        
          | 15BCE1012_lab_6 | 
          1340922 | 
        
        
          | 15BCE1012_lab6_DV | 
          1207668 | 
        
        
          | 15BCE1066_Lab6_data_Visualization | 
          1340922 | 
        
        
          | 15bce1287_lab_6 | 
          1340922 | 
        
        
          | 15BCE1376_lab6 | 
          1340922 | 
        
        
          | 1617_boxscore_edited_wl_ha | 
          333106 | 
        
        
          | 17 Years of Resident Advisor Reviews | 
          15266902 | 
        
        
          | 1718_boxscore_wl_ha | 
          358662 | 
        
        
          | 18 y/o weight-height records | 
          47778 | 
        
        
          | 18,393 Pitchfork Reviews | 
          83585024 | 
        
        
          | 180106_subm_1 | 
          4082820 | 
        
        
          | 180109_sub_1 | 
          4044923 | 
        
        
          | 180111_01 | 
          8071105 | 
        
        
          | 183,000+ Reddit Comments about Trump | 
          40099599 | 
        
        
          | 18th SAARC Tweets | 
          17129676 | 
        
        
          | 1data wrewrw | 
          89823 | 
        
        
          | 1k Pharmaceutical Pill Image Dataset | 
          8414289 | 
        
        
          | 1millionfile | 
          24899807 | 
        
        
          | 1st Submission | 
          8071237 | 
        
        
          | 1stsubmit | 
          7257447 | 
        
        
          | 1weigts | 
          2943944 | 
        
        
          | 1xgboost | 
          8652358 | 
        
        
          | 1YearTrainingData | 
          19261 | 
        
        
          | 2 Class Classification | 
          12035 | 
        
        
          | 2_combo_EDA_Output.csv | 
          221340 | 
        
        
          | 20 by median rank LB .285 script | 
          24706923 | 
        
        
          | 20 Newsgroups | 
          72078077 | 
        
        
          | 20 Years of Games | 
          2019628 | 
        
        
          | 2010 Austin weather | 
          254046 | 
        
        
          | 2010 US Census data | 
          11452992 | 
        
        
          | 2011 - 2013 NYC Traffic Volume Counts | 
          1436453 | 
        
        
          | 2011 NOAA Austin Climate | 
          236109 | 
        
        
          | 2012 and 2016 Presidential Elections | 
          3381885 | 
        
        
          | 2012 Election- Obama vs Romney | 
          158033839 | 
        
        
          | 2013 American Community Survey | 
          4203827010 | 
        
        
          | 2013-2014 Seoul Metropolitan Region Weather | 
          402307 | 
        
        
          | 2014 ACS Dashboard | 
          34483689 | 
        
        
          | 2014 American Community Survey | 
          3082677840 | 
        
        
          | 2014 New York City Taxi Trips | 
          512755993 | 
        
        
          | 2014 Public Libraries Survey | 
          3549121 | 
        
        
          | 2014 UN COMTRADE DATA | 
          177943062 | 
        
        
          | 2014 World Cup Forecasts and Scores | 
          285453 | 
        
        
          | 2014&2017 Bandung Public Transportation Data | 
          9755 | 
        
        
          | 2014nbaplayers | 
          82076 | 
        
        
          | 2015 American Community Survey | 
          4313602552 | 
        
        
          | 2015 Canadian General Election results | 
          42286565 | 
        
        
          | 2015 Flight Delays and Cancellations | 
          592430817 | 
        
        
          | 2015 Global Open Data Index | 
          262911 | 
        
        
          | 2015 LAPD Calls For Service | 
          58568183 | 
        
        
          | 2015 Notebook UX Survey | 
          766065 | 
        
        
          | 2015 NYC Taxi Trips  | 
          278000672 | 
        
        
          | 2015 Reddit Comments | 
          7610868 | 
        
        
          | 2015 Traffic Fatalities | 
          92018865 | 
        
        
          | 2015 US County-Level Population Estimates | 
          2204609 | 
        
        
          | 2015 US Traffic Fatalities | 
          9233282 | 
        
        
          | 2015-16-premier-league | 
          456 | 
        
        
          | 2016 Advanced Placement Exam Scores | 
          25797 | 
        
        
          | 2016 and 2017 Kitefoil Race Results | 
          392687 | 
        
        
          | 2016 Congress Votes | 
          47687 | 
        
        
          | 2016 Election Polls | 
          3097615 | 
        
        
          | 2016 EU Referendum in the United Kingdom | 
          118579 | 
        
        
          | 2016 Global Ecological Footprint | 
          22560 | 
        
        
          | 2016 Jan-June NYC Weather, hourly | 
          348557 | 
        
        
          | 2016 March ML Mania Predictions | 
          28731852 | 
        
        
          | 2016 New Coder Survey | 
          10079792 | 
        
        
          | 2016 NYC Real Time Traffic Speed Data Feed | 
          721872569 | 
        
        
          | 2016 Olympics in Rio de Janeiro | 
          794050 | 
        
        
          | 2016 Parties in New York | 
          55830594 | 
        
        
          | 2016 Presidential Campaign Finance | 
          9216805 | 
        
        
          | 2016 U.S. Presidential Campaign Texts and Polls | 
          1782759 | 
        
        
          | 2016 U.S. Presidential Election Memes | 
          27375544 | 
        
        
          | 2016 US Election | 
          50164290 | 
        
        
          | 2016 US Presidential Debates | 
          375078 | 
        
        
          | 2016 US Presidential Election Vote By County | 
          1682243 | 
        
        
          | 2016 US Presidential Primary Debates | 
          4317145 | 
        
        
          | 2016 VOTER Survey Data Set | 
          62584572 | 
        
        
          | 2017 #Oscars Tweets | 
          16925495 | 
        
        
          | 2017 census data for 4chan's fitness board | 
          118761 | 
        
        
          | 2017 Conservative Party of Canada Leadership | 
          1902750 | 
        
        
          | 2017 Iditarod Trail Sled Dog Race | 
          141881 | 
        
        
          | 2017 Index of economic freedom | 
          28069 | 
        
        
          | 2017 March ML Mania Predictions | 
          27699297 | 
        
        
          | 2017 March ML Mania Processed Predictions | 
          93073830 | 
        
        
          | 2017 Military Strength Ranking | 
          60594 | 
        
        
          | 2017 State Assembly Election Results | 
          842328 | 
        
        
          | 2017_07_18-14_10_38_bioharness | 
          2513688 | 
        
        
          | 2017_2c_OrgDatos_TP1AnalisisExploratorio | 
          244627734 | 
        
        
          | 2017_X | 
          29530 | 
        
        
          | 2017-10-20 | 
          230978 | 
        
        
          | 2017-10-20-BCHARTS-KRAKENUSD | 
          113807 | 
        
        
          | 2017-12-27-Leaderboard Corporacion Favorita | 
          330254 | 
        
        
          | 2017.CSV | 
          24139 | 
        
        
          | 20170110 | 
          4044961 | 
        
        
          | 20171219_1 | 
          7258872 | 
        
        
          | 20171226 | 
          1420 | 
        
        
          | 20171227 | 
          29061 | 
        
        
          | 20180104 | 
          7369884 | 
        
        
          | 201801041655 | 
          14712605 | 
        
        
          | 20180111102200 | 
          16149782 | 
        
        
          | 20180111153101 | 
          7367735 | 
        
        
          | 20180111153101 | 
          24219783 | 
        
        
          | 20180112181420 | 
          16139459 | 
        
        
          | 20180113073044 | 
          16670587 | 
        
        
          | 20180113073715 | 
          16136616 | 
        
        
          | 20180113075700 | 
          16136892 | 
        
        
          | 20180113153630 | 
          8069270 | 
        
        
          | 20180113155355 | 
          8069747 | 
        
        
          | 20180113155918 | 
          8069994 | 
        
        
          | 20180113161850 | 
          9321763 | 
        
        
          | 20180113163013 | 
          9321763 | 
        
        
          | 20180113165846 | 
          2434243 | 
        
        
          | 20180114000000 | 
          13156476 | 
        
        
          | 20180114190121 | 
          16139215 | 
        
        
          | 20180116083816 | 
          8071716 | 
        
        
          | 20180116103132 | 
          9594150 | 
        
        
          | 20180116103133 | 
          8067964 | 
        
        
          | 20k Tweets Relating to #JerusalemEmbassy | 
          1155425 | 
        
        
          | 222222 | 
          7372219 | 
        
        
          | 23333  | 
          439 | 
        
        
          | 236365 | 
          31887 | 
        
        
          | 24 thousand tweets later  | 
          3697735 | 
        
        
          | 24102017_sf | 
          18167 | 
        
        
          | 24102017ds_fs | 
          18167 | 
        
        
          | 24500 plane routes | 
          238249 | 
        
        
          | 273_project | 
          140401069 | 
        
        
          | 2D_example | 
          421 | 
        
        
          | 2epochs | 
          22857356 | 
        
        
          | 2nd Submission | 
          8069950 | 
        
        
          | 2sigma | 
          580023307 | 
        
        
          | 2st Submission | 
          8069950 | 
        
        
          | 2YearDataAnalysisData | 
          38218 | 
        
        
          | 3 Million German Sentences | 
          400191072 | 
        
        
          | 3 models_HPfiltered_252x252 | 
          13313269 | 
        
        
          | 30 Years of European Solar Generation | 
          591041118 | 
        
        
          | 30 Years of European Wind Generation | 
          744718937 | 
        
        
          | 300600 | 
          56947062 | 
        
        
          | 300600_2 | 
          44234355 | 
        
        
          | 311 service requests NYC | 
          235458471 | 
        
        
          | 311_NYC_2011 | 
          30769335 | 
        
        
          | 311_Service_Requests_from_2010_to_Present | 
          1865950580 | 
        
        
          | 311_Service_Requests_from_2010_to_Present.csv.zip | 
          1695248161 | 
        
        
          | 350 000+ movies from themoviedb.org | 
          201485329 | 
        
        
          | 35000 car adv  | 
          2808122 | 
        
        
          | 380,000+ lyrics from MetroLyrics | 
          324632382 | 
        
        
          | 3D MNIST | 
          255816956 | 
        
        
          | 3Happyscore | 
          65289 | 
        
        
          | 3mWindow | 
          585319 | 
        
        
          | 3rd Submission | 
          8069938 | 
        
        
          | 3rd_submit | 
          6298003 | 
        
        
          | 444444444 | 
          35045 | 
        
        
          | 4chan.org/pol forum posts with keyword Trump | 
          120786944 | 
        
        
          | 4dataset | 
          743301 | 
        
        
          | 5 Celebrity Faces Dataset | 
          2639585 | 
        
        
          | 5 Day Data Challenge: Day 1 | 
          5636539 | 
        
        
          | 5 Day Data Challenge: Day 1 | 
          87053 | 
        
        
          | 5 day data-challange day-1 | 
          7549 | 
        
        
          | 5 giorni Data Challenge: Day 4 | 
          5213 | 
        
        
          | 5_10_network | 
          8368 | 
        
        
          | 5-Day Data Challenge Sign-Up Survey Responses | 
          722715 | 
        
        
          | 5.1. Clientes-centro-comercial | 
          4339 | 
        
        
          | 50 Startups | 
          2436 | 
        
        
          | 50_100_network | 
          809692 | 
        
        
          | 50_Startups | 
          2436 | 
        
        
          | 500 Cities: Local Data for Better Health | 
          227806975 | 
        
        
          | 500 samples | 
          50842 | 
        
        
          | 5000_IMDB_Movies_Multivariant_Analysis | 
          1877207 | 
        
        
          | 50000_Songs_GRU | 
          4165976 | 
        
        
          | 508_HW1 | 
          626906 | 
        
        
          | 50words | 
          707 | 
        
        
          | 515K Hotel Reviews Data in Europe | 
          238154765 | 
        
        
          | 515k Reviews After Preprocessing | 
          63020578 | 
        
        
          | 52testingcrypt | 
          2326 | 
        
        
          | 55000+ Song Lyrics | 
          72436445 | 
        
        
          | 555555555 | 
          35045 | 
        
        
          | 57_features | 
          4434985 | 
        
        
          | 58 years of Temperature Data | 
          4479618 | 
        
        
          | 65 World Indexes | 
          123291 | 
        
        
          | 7_digit | 
          824 | 
        
        
          | 7ecb8f4fe2ece9f4c8ffd23af10c310f | 
          127264365 | 
        
        
          | 7k kitties | 
          23886292 | 
        
        
          | 80 Cereals | 
          5063 | 
        
        
          | 80 Cereals | 
          5157 | 
        
        
          | 80 Cereals: Nutrition data on 80 cereal products | 
          2258 | 
        
        
          | 801 Funny Images With Rating | 
          128752299 | 
        
        
          | 80cereal | 
          2258 | 
        
        
          | 80cereal.csv | 
          5063 | 
        
        
          | 888888 | 
          35045 | 
        
        
          | 8a.nu Climbing Logbook | 
          467013632 | 
        
        
          | 900_items | 
          184439926 | 
        
        
          | 911 Data | 
          1816 | 
        
        
          | 911.csv | 
          10196426 | 
        
        
          | 99 acres Housing details | 
          44502 | 
        
        
          | A 6-figure prize by soccer prediction (Live Feed) | 
          17879235 | 
        
        
          | A Benchmark Data for Turkish Text Categorization | 
          3503109 | 
        
        
          | a dataset test | 
          315047004 | 
        
        
          | A millennium of macroeconomic data | 
          25937595 | 
        
        
          | A Million News Headlines | 
          19469752 | 
        
        
          | A Million Pseudo-Random Digits | 
          2000031 | 
        
        
          | A Pickle of unique words from Quoras Data | 
          1090513 | 
        
        
          | A plume | 
          271744 | 
        
        
          | A Recruiter Year in Review! | 
          295819 | 
        
        
          | A Tribuna | 
          140405644 | 
        
        
          | A Visual and Intuitive Train-Test Pattern | 
          1016222 | 
        
        
          | A Year of Pumpkin Prices | 
          188088 | 
        
        
          | A-Z Handwritten Alphabets in .csv format | 
          85236774 | 
        
        
          | A1-Burtin | 
          752 | 
        
        
          | A102 Big Mart | 
          1397246 | 
        
        
          | A102 DATASET | 
          1395830 | 
        
        
          | A102 project | 
          1397246 | 
        
        
          | aaaaaa | 
          4044907 | 
        
        
          | aa102data | 
          1395830 | 
        
        
          | aaaaaa | 
          1857825 | 
        
        
          | aaaaaa | 
          1263743 | 
        
        
          | aaaaaa | 
          3172 | 
        
        
          | a102data | 
          1397246 | 
        
        
          | aaData | 
          164579 | 
        
        
          | aaaaaa | 
          61194 | 
        
        
          | aadasdasdasd | 
          28735 | 
        
        
          | aaaaaa | 
          460 | 
        
        
          | aadhaar | 
          11817671 | 
        
        
          | aaaaaaaaaaaaaaaaaaaaaaaaaaaaa | 
          3218780 | 
        
        
          | aaaaaaaa | 
          134368 | 
        
        
          | aaaaaaaaaaaa | 
          1737535 |